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1. OVERVIEW OF THE SOCRATES CODE

The airect simulation Monte Carlo method, as pioneered by G. A. Bird, 1

provides a powerful technique for the simulation of real gas flows. it

bridges the gap between continuum and free molecular flow, retaining
vaiidity in either extreme. It can be used to describe complex mixtures,

including effects of chemical reactions, heat conduction, viscosity and

u(ltfusion for flows in three dimensions. This report describes the

application of this technique to the contamination problem, considering

flow fietns created by the interaction of a spacecraft with the atmosphere.

The resultant model has been named the SOCRATES code, which is an acronym

for Shuttle Orbiter Contamination Representation Accounting for Tratisiently

Emitted Species.

Contamination of instruments on the space shuttle orbiter is an issue

of major concern. The shuttle gives oft matter through surface outgassing,

via various thrusters, and from flash evaporators. At altitudes where the

atmospheric mean free path is comparable to or less than shuttle

dimensions, the deposition back onto shuttle-borne instruments will be

largely aetermined by the multiple collision environment surrounding the

shuttle. Even at higher altitudes, this may be the dominant source of

contaminants for some portions of the shuttle. In addition to physical

contamination of shuttle surfaces, "radiation contamination" is also a

potential problem as gases surrounding the shuttle collide at high speed

with atmospheric molecules. These energetic collisions can lead to

vibrational excitation and subsequent radiative decay. A similar issue of

some concern is the presence of ions in the vicinity of the shuttle which

can (possibly) be produced via the critical ionization velocity effect.

Ions in the shuttle environment may remain there for some time due to

electric field forces, and radiative recombination is another potential

source of radiation contamination. The situation is depicted schematically

in Figuie 1.

Spectral Sciences, Inc. (SSI) developed an initial version of this

three-dimensional Monte Carlo model of the flow field about the shuttle so

that the contamination can be accurately characterized and understood. A

comprehensive model of the contaminant field surrounding the space shuttle

orbiter is crucial to the design of experiments which are to fly on the

1. Biro, G. A., Molecular Gas Dynamics, Clarendon Press, Oxford (1976).



shuttle and to the development of procedures for minimizing the

contamination. The code is designed in a highly modularized fashion so

that additional physical and geometric complexity can be added as deemed

necessary without requiring major rewriting of the model.

The basic calculational technique Is well described by its originator

in Ref. 1. However, there have been significant extensions of the method

since the publication of Ref. 1. The present purpose is to describe how

the technique is implemented in SOCRATES; but elementary concepts and

relations which are essential to a coherent explanation are included here

also.

The direct simulation Monte Carlo method involves storing a discrete

number of molecules (via their velocities, positions, and other pertinent

information) in a computer. The solution region is broken up into a number

of separate cells, and the solution is stepped forward in time in a two-

stage process. First, the molecules are advanced along their trajectories

by an amount appropriate to their velocity and a time increment, Atm. In

this ttrst. stage some molecules will leave the solution region, and some

will be introduced as determined by the boundary conditions for a

particular problem. The second stage is to simulate collisions in each

cell appropriate to at, so that collision frequencies are properly

simulated. A basic hypothesis of the method is that if the time step is

tane small enough, the processes of translations and collisions can be

uncoupled in this manner.

Periodically, the solution is sampled by accumulating statistical sums

of number densities, velocities and other basic properties. The solution

is run repeatedly until statistical deviations are reduced to a desired

limit, and then physically meaningful output quantities are computed from

the statistical sums. The number of molecules represented is typically

many thousand at a time, which Is vastly fewer than the number occurring in

virtually all real flows. Hence, the construction of a dynamically similar

flow to be simulated in the computer is an essential feature of the method.

The logical flow of the solution procedure is shown in Figure 2, which

includes the steps dpscribed above. The following sections describe in

detail the implementation of each of the boxes shown in Figure 2 and the

application of the code to some sample problems.

-2-



ATMOSPHERIC WIND

CABIN

SURFACE DEPOSITION
AND OUTGASSING EVAPORATOR

VENTS
RCS THRUSTERS

Figure 1. A Schematic Representation ol, the Major Elements of the
Shuttle Contamination Problem.
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OEFINE THE INITIAL STATE OF THE SIMULATION

ADVANCE MOLECULES ALONG THEIR7
TRRJECTORIES FOH A TIME STEP At,]-

INTRODUCE ATMOSPHERIC MOLECULES(
THROUGH THE OUTER BOUNDARY

INTRODUCE CONTAMINANT MOLECULES
FROM THE SHUTTLE SOURCES

ISIMULRTE MOLECULAR COLLISIONS

HAS THE NO
LTOSOLUTION REACHED STEADY

STATE?

YES• + YES

ISAMPLE CURRENT MOLECULAR PARRMETERS

ND IS THE

SUFFICIENT?

YES

JGENERRTE OUTPUT FROM RCCUMULATED STATISTICS

Figure 2. A Diagram of the Basic Solution Procedure Utilized for

Steady State Solutions in the SOCRATES Contamination

Model.

2. GAS MODEL AND EQUILIBRIUM PROPERTIES

2.1 Preliminary Equilibrium Gas Relations

The far field equilibrium state has properties which are of relevance

to the flow field interaction problem to be solved. Length and velocity

scaies for the problem are obtained from the far field and used to

norn-aimensionalize the inLernal code variables. Even if this were not

-4-



aone, it wo provide an important comparison case for densities,

velocities, collision frequencies, etc.

For a rest gas in equilibrium, the normalized distribution function

tor trie relative speed, cr , between molecules of species i and molecules of

species j is given by
2

fi7(cr) 4a3/2J ) exp(-aijc2 (1)

where

a11  - 2RoT (2)

ann p,. is the reauced mass of the pair; i.e.,

= mi+m1 
(3)

with m, ana mj representing the masses of the two species. In these

reiations, TO is the far field temperature and R0 is the universal gas

constant. (R0 is used instead of Boltzmann's constant since the molecular

masses will be consistently represented in atomic mass units rather than

grains.) The available translational collisional energy between the two

moiccuies, E., is given by

E 1 2 (4)

2. Chapman, S. and Cow]ing, T. G., The Mathematical Theory of Non-
Uniform Gases, 3rd ed., Cambridge University Press, Cambridge, 86
(1970).



2.2 Analytical Form ot the Collision Cross Section

Whenever the direct simulation Monte Carlo method is applied, it is

necessary to make trade offs between accuracy and simplicity in molecular

models. It does no good to use a complex molecular potential surface and

then find that reasonable computer run times result in very large

statistical fluctuations in the output. Since the final output will

refiect errors in the statistics as well as errors in the models, there is

a strong impetus to use models which contain the essential physics, but

which can be applied in a computationally efficient manner. The current

state-of-the-art is the Variable-Hard-Sphere (VHS) model. 3  In this model

molecules have a collision cross section which varies as an inverse power

ol the available collision energy. Hence, if aij is the collision cross

section for collisions of species i with species j, then aij is given by a

relation of the form

Tij = AijEc (5)

where A1j is a constant coefficient. It follows that the effective

diameter for molecules of species i, di , is implicitly defined as a

tunction of' available collision energy by the relation

Alcan be determinea from a reference cross section and velocity via

Ai l o(micr2 /4)'J]ref (7)

It a reference cross section is given for a reference temperature rather
than a reference velocity, then the usual choice for the reference velocity

is that velocity which has a collision energy equal to the mean collision

energy occurring in collisions at the reference temperature.

Mathematically, this is equivalent to

3. Bird, G. A., "Monte-Carlo Simulation in an Engineering Contuxt",
Proceedings of the 12th International Symposium on Rarefied Gas
Dynamics. 74, Progress in Astronautics and Aeronautics, AIAA. New
York (1981).

-6-
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2 _ <Cr3 ii>(

where the angle brackets indicate averages taken over the distribution

function given in Eq. (1) evaluated for mi=mj and TO=Tref. Equation (8)

can be simplified to give

2 4(2 - ca)RoTref
(cr)ref = (9

For simulations involving a large number of species, reference cross

sections are frequently not available for all possible collision pairs. In

this case it is possible to specify Ai1 for self-collisions only, and then

use Eq. (6) to get a molecular diameter as a function of collision energy.

Then. appiytng the relation

cij = in[(di + dj)/21 2  (10)

the coefficient in Eq. (5) for interspecie collisions is given by

-1 - ' j ) 12

A( L -i A i + -4Aj)1 (11)

Par the internal workings of a Monte Carlo code, it is usually more

convenient to express the collision cross section as a function of the

reiative collision velocity rather than the collision energy. This is

simply achieved via the relation

ai B ij r (12)

where

aij = Aij(pij/2)-a (13)

The parameter w can be related to n, the exponent of distance in an

inverse power intermolecular force law via the relation
3

2 (14)

7-

''-nalnin~ lill -7-



ttence. hard sphere molecules (for which T) goes to infinity) are represented

by w equal to zero. There is a substantial body of evidence, however, that

the effective size of molecules does indeed decrease with increasing

collision energy, so a positive value of ( is usually a better choLer. (.)

can be determined from molecular beam data, or from its macroscopic

implications. For example, if s is the exponent for the variation of the

viscosity coetficient. with temperature, then it can be shown 3 that

s = O + 0.5 , (15)

so a measurement o. the temperature dependence of the viscosity coefficient

serves as an indirect aetermination of (a.

in oroer to incorporate the model for internal energy transfer- to be

discussed in Section 5, it is necessary that c be assumed the same for all

interactions. This represents one of the major restrictions in the current

state of modeling.

Although the sizes of molecules are allowed to vary in the VHS model

in deciding whether or not a collision is to occur, when a collision does

occur the post collision velocity components are computea as if it were a

hara sphere collision (see Section 5). This results in a substantial

computational simplification and yet retains good agreement with the

macroscopic predictions of the more exact model. 3  (See Ref. 1 for a

niscussion of molecular scattering for general power law potentials.)

2.3 Equilibrium Reference Properties for a Multi-Component

Gas

One advantage of the VHS model is that the molecules have a well

defined cross section, so it is possible to define a mean free path without

putting limitations on the minimum deflection angle that is considered. As

is the general case for multi-component gases, however, each component has

its own mean free path, and the overall mean free path for the mixture must

be defined as a weighted average of the mean free paths of the inuivioual

species. The somewhat cumbersome relations required to calculate the

overall mean free path are given here. it should be noted that the mean

free path is calculated only once for a given problem, so the computational

effort required to evaluate it is completely negligible.

I I I I •nnmn ,,mm, - ,,,,--8-.



An indivioual molecule of species i will suffer collisions with

molecuies of species j with a frequency vi given by

v4 = njCO<Cijcr> , (16)

where nl, is the number aensity of species j and <aijcr> is the average

procuct of cross section times relative velocity for the two species,

obtained by integrating over the distribution function given in Eq. (1).

When this operation is performed, the result is

21ijn.jP(2 - ')a /2/j , (17)

where P denotes the gamma function.

The total collision frequency for an individual molecule of species i,

V i , is obtained by summing Eq. (16) over all species, i.e.,

P

70 (18)

J=1

ana the mean free path, Xi, for molecules of species i is given by

<c z> 1

X i = < = -78R - ,/(ITm1 ) , (19)

wriere <c> is the mean molecular speed for species i molecules. The mean

free path for the gas mixture, X., is then defined as the number density

welghted average of the X i via

= i  
, (20)

1=1

where n,, is the total number density:

n.= .ni (21)

-9-



A useful velocity scale is given by v s , defined by

v s = -2RoT/<m> I (22)

where <m> is the reference wean molecular weight, i.e.,

pV--nimm i
<m> = nm(23)

n.
i=1

VI is the most probable molecular speed for molecules of the mean molecular

weight at the reference temperature.

2.4 Internal Energy Model

The current state of modeling for internal energy effects in Monte

Carlo flow field simulations is the phenomenological model of Borgnakke and

Larsen. 4  In this model, transfer of energy between internal and

translational modes is allowed, but it is necessary to assume that each

species has a fixed number of internal degrees of freedom. ri. This is

equivalent to assuming a constant specific heat, Cp, for each species

which can be related to the number of internal degrees of freedom via

Ci = 2  mi - 5  (24)
RO

Alternatively, Ci can be related to the ratio of specific heats for species

i, -1', by the relation

5 -

(

i
C1 i I " (25)

The interchange of internal and translational energy will be discussed in

Section 5, and the selection of initial conditions will be discussed in

Section 9.

4. Borgnakke, C. and Larsen, P. S., "Statistical Collision Model for
Monte Carlo Simulation of Polyatomic Gas Mixture", Journal of
Computational Physics, 18, 405 (1975).

- 10 -



3. INTERNAL REPRESENTATION

3.1 State Vector

Each simulated molecule in the SOCRATES code is represented by a state
vector which comprises all of the information the code has with regard to

that particular molecule. The state vector has:

* Position elements defining the location of the molecule in
Cartesian coordinates.

a Three velocity elements, giving the corresponding velocity
components in the same coordinate system.

* A value for the internal energy (usually rotational) of the
molecule. Note that the basic model does not discriminate
between internal modes for a particular species. This can be
done, if desired, by introducing separate species for the
distinct modes.

@ An indicator identifying the molecular species. This
indicator in turn implies all of the properties associated
with that species (molecular weight, number of internal
aegrees of freedom, name, etc.).

* An indicator giving the computation cell in which the molecule
currently resides. (This could be calculated from its
position, but it is needed so often in the calculation that
the extra storage location is justified by the increase In
efficiency.)

e A time element, giving the time at which the molecule will
strike a solution surface element if it continues on its
current trajectory. (See the discussion in Section 11.)

3.2 Reduction to a Reasonable Number of Simulated Molecules

It is clearly impossible to run a computer simulation with anywhere

near the same number of molecules that exist In the actual flow problem.
The aajustment that is made to make the simulation possible Is to

artificially increase the cross section, and decrease the number density,
by the same large factor. It is the product of number density and cross

section which determines the collision frequency for a given molecule, and
it is the collision frequency which must be correctly simulated if the
correspondence between the real and simulated flows is to be accurate.
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This is an essential feature of the direct simuiation method which has not

aiways been adequately emphasized. It means that the internal scaling

factors ao not proceed on a strictly dimensional basis. For example, the

scaling factor for cross sections is not the square of the scaling factor

for lengths.

3.3 Internal Scales

Many problems are more reasonably handled if the internal calcutations

art carried out with scaled or dimensionless values. This avoidz possible

problems such as numerical overflow which can cause an execution time

error. Such errors can be particularly insidious and difficult to locate

in a coae whose very essence involves the random combination of numbers.

The output is produced in physically meaningful dimensional form.

Hence. the scaling that is discussed here is irrelevant (or nearly so) to

the interpretation of code output; it is strictly a matter of the internal

representation.

The choices for length and velocity scales are X and vas define in

Section 2, which are used to non-dimensionalize the position and velocity

elements of the state vector. There is no need to provide further

non-aimensionalization of mass beyond representing them in atomic mass

units, so none is provided. Hence, the scaling factor for energy is just
v2 which is used to non-dimensionaiize the internal energy element of the
Sw

state vector.

Number densities are scaled with respect to the far field ambient

number density, nD, which leaves only the cross section scaling factor to

be determined. This factor follows from the condition of flow similarity,

which requires that the probability of a molecule suffering a collision in

traveling a given path length be accurately simulated. This dimensionless

prooability can be expressed as the product of a cross section times a

number aensity times a path length (at least for small enough path

iengths), and it is required that this product be the same for dimensional

an scaled representations. This implies that the product of the scaling

factors for these three quantities be unity and, therefore, that the cross

section scaling factor be 1/(nk C). The internal scaling factors used in

SOCRATES are summarized in Table 1.
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Table 1. Scaling Faclors Used for the Internal
Representation of Quantities in the Socrates

Coce. All Variables are Defined in Section

2.

PROPERTY SCALING FACTOR

Lengrh ............ XW
Velocity .......... vs
'lmpm .............. XW/vs

Number Density .... n.
Mass .............. a.m.u.
Energy ............ (a.m.u.)v s
Cross Section ..... KNOW )

3.4 Weighting Factors

Statistical weighting factors are a crucial element of a successful

Monte Carlo simulation, allowing trace species to be described with

reasonable accuracy. The weighting factor is the number of "real"

molecules that correspond to each "simulated" molecule. A "simulated"

moiecuie corresponds to one molecule's worth of storage (one state vector)

allocated in the program, and the weighting factor is its statistical

weight. So, for example, the total number density in a cell, n(cetl can be

cxpresseo

P NXW(

'cell 7 2. v2

where N, inuicates the number of simulated molecules of species i in the

ceii. W is the weighting factor for that species in that cell, V is the

cUIL vorume, and p is the number of species. The product NW that appears

in Eq. (26) is termed the number of "real" molecules of species i in the

ce:i. Note that n cell as caiculateu by Eq. (26) is a scaled value: it

wou1Q have to be muttipliea by n., as shown in Table 1, to become a

dimensional evaluation of the number density.

The weighting factors used in SOCRATES are dependent on cell and

se. c.es. Hence, flow fields where a given species is much more dominant in

one portion of the solution region than another can be accurately

represen1eu.
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A critical error that can occur in Monte Carto codes is to have the

number of simulated molecules exceed the dimensioned limit of the code. On

the other hand, it is generally desirable to have as many molecules as is

teasible to obtain good statistics. Resolution of these confjicting

considerations is complicateu by lack of a priori knowledge of what the

species number densities will be as a function of space and time. The way
the resolution is achieved is by a dynamic adjustment of the weighting

factors, as required. This keeps the number of simulated molecules more or

less constant while allowing the number of real molecules to adjust as the

solution evolves. The introduction or weighting factors, with the ability

to adjust them as the solution demands, is an important feature ot a Monte

Carlo simulation which is to be usable by non-experts.

4. GRID COORDINATES AND GRID STRUCTURE

As discussed in Section 1, the Monte Carlo procedure works by breaking

the calculation region up into cells. A solution cell should be a region

in which no properties change greatly, i.e., the dimensions of a cell

should ideally be small compared to the local scale length of the flow

field. Collisions are simulated on a cell-by-cell basis, and molecules can

experience collisions only with other molecules in the same cell. There is

no other spatial criterion used for determining collision partners, so the

cell determines the collision environment for any molecule within it. (n

audition to aefining the collision environment, the other major function of

the cell structure )s to determine the points at which output is generated.

There is no requirement that the cells be dividedi up in the same coordinate

system usea in the molecular state vector.

For Monte Carlo calculations, as for other types of computational

flui(t mechanic analyses, the selection of grid geometry is a critical

requirement which is often more of an art than a science. Considerations

in tne selection ot a grid are:

The grid should be as simple as possible, since the program
must repeatedly decide which cell molecules reside in as they
move throughout the solution region. If this determination
required the solution of a complex equation or sifting through
tables, the entire program would run significantly slower than
it the cell can be determined easily.
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* The grid should concentrate cells where grauients are the
largest, so that the least number of total cells (and
molecules) are needed to obtain an accurate solution.

* The grid should provide flow field information where it is
required, with the resoiution that is desired for the answer
of interest.

The SOCRATES grid structure is a simple extension of the basic
(;artesian coordinate syst-em that is used elsewhere in the code. The cells

are (Jetermined by the intersection of three families of planes, each family

being perpenuicular to one of the coordinate directions. For each

coordinate, there is a plane at zero and subsequent planes proceed outward

in the plus and minus couruinatc direction. For instance, the intersection

points, xj, on the positive x axis are given by

ax exp(jB/N) - 1 (27)max exp(B) I

where x max is the position of the last plane (the edge of the solution

region in that direction), N is the number of planes intersecting the

posttive x axis, and 8 is an adjustable parameter. For B approaching zero,

succcssive planes have equal spatial increments; and as B is increased the

planes become more concentrated near the origin. The same relation is

appiteu for planes intersecting the minus x direction, with xmax being

repiaced by Xmin . The other four directions (±y and ±z) are handled in an

analogous fashion. Note that the B and N parameters are specified

separately for each of the six directions away from the origin, depending

on the physics of the problem under consideration. These values can be

input by the user or automatically selected by the program. The SOCRATES

grid structure fulfills the objectives enumerated above to a substantial

oegree. The relations for cell boundary locations are easily inverted to

ootain the cell number corresponding to a given position, and the parameter

or the distribution allows for concentration of cells in the inner region

while allowing larger cells further out where the gradients are less

severe.

A sample cell structure resulting from this technique is illustrated
in Figure 3. For visual clarity, the number of planes has been limited to

two in each of the six directions, since this is the fewest number which
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*Y

Figurc 3. A Schematic Showing the Basic Design of the Socrates Cell
Structure Which Uses Cartesian Courdinates with Uneven
Spacing.

ijlustrates the uneven spacing. A typical calculation would have severai

times that many planes, but the figure is difficult enough to interpret as

,1. is. The shuttle (or, in principie, any spacecraft) can be arbitrarily

tocateo within this cell structure; though it should be locateo near the

center (it the grid structure for it to make sense. Similarly, the wind

(airecuIon as seen from the shuttle can come from any direction whatsoever;

triere is nothing in the ceil structure or coordinate aetinition which

restricts iL.

S. COLLISION MECHANICS

5.1 Relations for Elastic Collisions

The purpose of this section is to present relations appropriate to the

simulation of a collision in the SOCRATES code. (The question of how
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moIc'uLes are seIcCe(I for coJisions, which is crucial to the proper

slmu.at,un o! collision frequency, will be taken up in the next section.)

(:onservation of momentum implies that the center-of-mass velocity of the

cotlisjon pair is unchangeo by the collision; aria conservation of energy

then Impiles that the magnituce of the relative velocity between the

co tision partners is also unchanged ny the collision.5  Since the

col is on i, treate as a statistical event, all that remains is to select

the, (irection of the post--collision relative velocity vector from the

correct aistribution. As mentioned in Section 2, collisions in the VHS

mo ei art treatea as hard sphere collisions when they occur (though they (1o

not occ:ur with the same velocity depenoence as do hard sphere collisions).

H.e ,cc, as far as the collision mechanics is concerned, the model is a haro

spner'e monel. For hard sphere moiecules, all directions tor the

posL-c(oJlision re'aLive velocity vector are equally likely. This is the

chL-et computational simplicity of the VHS model.

-,et the two molecules be itentitieu by subscripts 1 and 2, with m ana

v (lerating their masses and vejocitles. If i and f indicate initial and

in it StULeS. theln the reiations for the collision can be summarized via:

-M- vII - m2 v2 j

VI + m2

v, = Vii - v2i(9)

cos(e) = 1 - 20 1 (30)

sin(e) = -V - cosz(e) , (31)

* = 2 0 , (32)

.5 V inccnti, W. G. and Kruger, C. H., Jr., Introduction to Physical Gas
Dynamics, John Wiley and Sons, 348 (1965).
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Vrf vLcos(e), sin(e)cos(f), sin(e)sin(*)] (33)

_ _ m2vrf
vii - VCR + (34)

ann

_ - mlvrt(
v2t vcm ml + m2 (35)

In these relations, and throughout this report, 1 inuicates a random

variabie which is evenly distributeu on the interval zero to one. Each

time that B appears a distinct evaluation of the random variable is

impli eu.

5.2 Effect of Coordinate System

Nore rhat inc expression for Lhe post-collision relative velocity

v(ecLor (Eq. (33)) is not. coordinate system specific. The indicated vector

components can apply to any -locally orthogonal coordinate system, since the

direction implied is random. The convenient coordinate system to use, of

course, is the coordinate system used to define the velocity elements of

the state vector.

Although Eq. (33) is independent of coordinate system, there is a

source of error which is dependent on coordinate system. This error arises

from a basic premise of the direct simulation Monte Carlo methon, namely

that position in the cell is ignored when selecting collision partners. If

the velocities are expressed in a coordinate system which has spatially

varying basis vectors, then differences in position between the two

molecules cart imply an erroneous difference in velocity.

SOCRATES makes use of the effect of spatially varying basis vectors to

sojve an otherwise difficult problem. The problem arises cue to the

presence of concentrated sources of contaminants, such as thrusters and

evaporator vents, which are modeled as point sources prouucing molecules

traveling (initially) directly away from the source. Since there is no

length scale to a point source, the assumption that properties are constant

ror the ceils in the immediate vicinity o1 the source must be invai,.
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This can result in improper collision sampling if special care is not

taken.

If the velocities are expresses in Cartesian coordinates, for

instance, then two molecules selected from different positions within the

ceil containing such a point source can have a substantial relative

velocity. This relative velocity is illusory, however, since it merely

results from the assumption of a point source and the neglect of spatial

differences; there should not be collisions based on this relative velocity

since the molecules are, in fact, heading away from each other.

A simple resolution to this problem is to express the source velocity

eLements in spherical polar coordinates. In these coordinates, every

molecule leaves the point source with the same velocity in the direction of

the spherical radius vector. Expressed in spherical polar coordinates, the

relative velocity disappears. SOCRATES transforms velocity vectors to

spherical polar coordinates for cells in the vicinity of point sources

(specifically. when the total number density is greater than three times

the ambient number density). Collisions are sampled in the transformed

coordinates, and then the velocity elements are transformed back to the

normal representation after collisions have been sampled for the cell in

qtueSLiOn.

5.3 Simulation of Inelastic Collisions

SOCRATES uses the Borgnakke and Larsen4 phenomenological model for

transter of energy between internal and translational modes. In this

model, a collision is assumed to be either perfectly elastic or perfectly

inelastic, via a user specified probability. A perfectly inelastic

coillision is achieved by summing the total pre-collision energy (internal

energy of both molecules plus the translational energy of their relative

motion, Eq. (4)), and then assigning post-collision values from the

equilibrium distribution for collisions with that total amount of energy,

taking into account the number of internal degrees of freedom in the two

molecules. Note that this model has the ability to relax from a

nonequilibrium to an equilibrium state via an effective collision number.

The ability to exchange internal energy in such a manner comprises a

significant increase in capability for Monte Carlo codes beyond the

previous moaels where molecules had no internal energy. It is this

capability which enables the codes to realistically predict the macroscopic

effects of polyatomic gas flow.

- 19 -



Let Ci and C 2 be the number of internal degrees of freedom of the two

molecules in an inelastic collision, and E. be the total collision energy

nefi ncd by

ES = Eci , El * 2i ' (36)

where Eci is the initial translational collision energy defined by Eq. (4),

and Eli and E2i are the pre-collision internal energies of the two

molecules. Using the procedures presented in Appendix A, the somewhat

cumbersome expressions given in Ref. (4) can be recast in terms of the

chi-square distribution. Post-collision values for the respective energies

are given by

X1 Es ('lf = l+ K2 X3 ,(7

EfX 26s (38)T1 =X + X2 + X3 ,(8

X
3E

s
Ecf = 1+ X 2 + X3 ,(9

where X. is selected from a chi-square distribution with C1 degrees of

freeaom, X 2 is selected from a chi-square distribution with C2 degrees of

freedom, ano X3 is selected from a chi-square distribution with 2(2 - w)

degrees of freedom. (Efficient procedures for sampling from a chi-square

a stribution are also given in Appendix A.) The post-collision

translational energy is then used to determine a new relative velocity

between the two molecules. With this new relative velocity, the previous

relations for determining the post-collision velocity elements of the

molecules apply for inelastic collisions as well as for elastic collisions.

The fact that the translational energy is selected from a distribution

with 2(2 - ca) rather than 3 degrees of freedom merits some explanation. It

is due to the fact that these molecules are not random samples from the

gas, but rather special molecules owing to their being the product of a

collision. This point can perhaps best be seen by considering microscopic
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reversibility, where the inverse collision occurs with the same rate ill

equilibrium. For this reverse process, molecules participating in it are

not all equally probable, since those with greater relative velocities are

more likely to collide. Hence, the number of degrees of freedom does take

on The value three for the special case of w equal to 1/2, which is

precisely the case of collision frequency being independent of relative

velocity. Translational energy in collisions behaves as if it has 2(2 - o)

aegrees of freedom.

5.4 Collisions Between Molecules with Distinct Weighting
Factors

Fhere is an obvious problem when considering a collision between two

simu-iated molecules with distinct weighting factors, since they represent a

aifferent numoer of real molecules. If WU1 and WL represent the weighting

factors for the two molecules, with WU being greater than WL, then the

collision is generally counted as WL "events". (More precisely, the

weigntring factor- applied to the collision is generally taken to be WL.)

This is accompjished by always assigning post-collision velocity and energy

componenis to The state vector of the molecule with the smaller weighting

factor, but only changing the components of the molecule with the greater

we_gnting factor some of the time. The probability that the molecule with

t::e greater weighting factor will have its components changed is simply

WL/WU. Statistically, this means that for a large number of simulated

coLlisions, each such simulated collision will average out to WL real

co isions for each species, even though their weighting factors differ.

it shoujl be noted that this does violate conservation of momentum ana

energy on an inuividuaJ collision basis, but these quantities are conserved

in the aggregate over a large number of collisions.

In some cases the collision is assigned a weighting factor Wc which is

iess than either of WL or Wu . When this is done, the velocity components

ana internal energies of the two molecules are changed with a probability

ot WC/W L and Wc/W U , respectiveiy. (See Section 6.)

5.5 Reactive Collisions

Reactive collisions can be simulated directly. The treatment of

reactive collisions is similar to that for inelastic collisions, except

,nai a heat of reaction is added to the total energy expressed il Eq. (36).
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Reactive collisions can result in the disappearance of' reactant molecules,

with the post-collision state being applied to the product molecules.

5.5.1 Types of Reactive Collisions

SOCRATES has a fairly comprehensive chemistry package which is capable

of handling a variety of reactive collisions. Generally speaking, a

reactive collision is an event which occurs due to collisions with a

probability that depends on the velocity (or energy) of the collisions.

The following generic types of reactions are treatable:

1. Specific Bimolecular Reactions, i.e, reactions of the form

A+84C+D ,

where A, B, C, and D are particular species. An example of
a reaction of this type is

O + H20 4 0 + H20*

(In this example, the vibrationally excited state of water,

f120 , is treated as a distinct species.)

2. Generic Bimolecular Reactions, i.e., reactions of the form

A + M - B - M I

where A and B are particular species, and M can be any
species. An example of a reaction of this type is

H20 + M # H2 20 ' M

which is similar to the previous reaction except that now

any molecule can serve to excite the water molecule.

3. Dissociation Reactions, i.e., reactions of the form

A+M4C+D+M I

where M is any molecule, and C and D are the fragments of A
that result from dissociation. An example of a reaction of
this type is

O2 +M-. +0OO+M
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5.5.2 Reactive Collision Probability

The Monte Carlo program simulates all of the above reaction types by

calculating a reactive cross section which is a function of the relative

collision energy. When a collision occurs, the reaction is simulated with

a probability which is proportional to the ratio of the reactive to

collision cross section at the relative velocity for the collision.

There are two options for specifying the reactive cross section. The

first is to specify an Arrhenius rate constant, kr, of the form

kr = ATnexp(-Ea/Ro T ) , (40)

where Ea 4s the activation energy of the reaction and A and n are

parameters of the relation. (R0 is the gas constant and T is temperature.)

The unique reactive cross section, o , corresponding to Eq. (40) is given

by
3

(1 . 6ij)1'SA

vr a (1 nP + ) Vt - ha/Ec (Ec - Ea )n  (41)
2ROnp(n + 3/2)

where Sij is unity for like reactants and zero for unlike reactants, r

represents the gamma function and Ec is the collision energy given by Eq.

(4). Note that a rate constant is defined in terms of an equilibrium

velocity distribution, so the correspondence between Eqs. (40) and (41) can

be maue. There is no requirement, of course, that the reactive cross

section given by Eq. (41) be used only in equilibrium situations. When

this option is used, only the arrhenius parameters A,n and Ea need be

specifiea; the program automatically computes the corresponding reactive

cross section.

For some reactions, the form of Eq. (41) is too restrictive, and it is

then possible to input a table giving the reaction cross section. The form

ot che table is of the same functional form as Eq. (41), namely the product

of the relative velocity times the reactive cross section is given as a

tunctLion of relative collision energy. Although this form is not standard,

r ,s far more convenient for reactions where one of the reactants is

generic ("M"), since there is no correspondence between collision velocity

and collision energy until the masses of both reactants are specified.
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5.5.3 Options for Simulating Reactive Collisions

SOCRATES has distinct options for simulating reactive collisions which

are reflective of different anticipated user needs. In all options, the

sampling of the reaction rate (if it is being performed) is done the same

way. Whenever a collision occurs between the two reactants, the reactive

cross section is calculated, and the reaction is counted with a weighting

factor, Wr , given by

vrO

Wr Vr ' (42)

where W c is the collision weighting factor (see the previous section).

Hence, even though the reactive cross section may be significantly smaller

than the collision cross section, the statistics on the reaction rate are

similar. (The statistics for the reaction rate may converge slower due to

the velocity dependence of the reaction cross section; but not due to its

absolute magnituoe.) If two molecules can participate in multiple

reactions, statistics are kept for each reaction.

If products are introduced as a result of the reaction, they can be

introduced at every simulated reactive collision with a weighting factor of

Wr, or introduced with a weighting factor of W c, but only Wr/Wc of the

time. The difference depends on the importance of tracing product species

in the simulation. The former approach will result in more computational

effort being spent on the product species, but it will give better

statistics on them. In either case, reactants are removed from the

simulation with a probability of Wr/Wc in any reactive collision.

In many cases, it is the reaction rate which is of interest. If the

reactive collisions are relatively improbable events, then the velocity

distribution of the reactants will be the same irrespective of whether the

reaction is actually simulated. For T-V excitation reactions, which are of

primary interest for IR interference, it is possible to calculate the

excitation rate without explicitly introducing excited state molecules into

the simulation, or removing the ground state molecule which becomes

excited. The calculation of reaction rates in such a manner is easily

incorporated into both procedures for simulating equilibrium flow.
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Furthermore, such a procedure can be extended to give accurate

estimates for the competing processes of collislonal quenching and

radiative decay. Since a vibrationally excited molecule has the same mass

as its ground state counterpart, the velocity distribution of excited state

moiecules should be well approximated by velocity distribution of the

corresponding grouna state molecules. Hence, it is possible to define an

artificial quenching reaction which has ground state molecules as both

reactants and proaucts (but with the proper quenching cross section). To

make the discussion more concrete, consider the following reaction scheme:

ke

A + M 4 A + M (RI)

k q

A + M - A + M (R2)

kr
A -# A + hv , (R3)

where excitation, quenching, and radiative decay are represented by
Reactions 1 through 3, respectively. The rate constants ke and kq are

determined by the existing velocity distribution of the reactants and the

relevant cross sections as a function of collision velocity. (The rate

constant kr is simply the inverse of the radiative lifetime, Tr-) Hence,

it the velocity distribution of the excited state species is the same as

for the ground state, then the rate constants are the same in the

artificial reaction scheme:

Ke

At+ M -i At + M (RI')

kq

At+ M -# At+ M (R2')

wnere At now represents both ground state and excited state molecules. The

artificial reaction scheme does not require the removal of reactants or the

introuction of products, but it does provide the basic rate constant

intormation (i.e., ke and kq) required to determine emission rates. At

equilibrium, Reactions 2 and 3 will balance Reaction 1, and A will be

relat:d to A* by
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Ake = A*(kq + kr) (43)

Substituting the definition of At,

At = A*A , (44)

it is possible to solve for the emission rate via

kek..

A*kr kek+krAt (45)

All of the information required to calculate the emission rate via Eq. (45)
is obtainable via a chemical reaction scheme in which products are never
explicitly introduced and reactants are never explicitly removed. This

capability is an option in SOCRATES, and it is completely compatible with

the procedures for speeding up execution in collision dominated scenarios.

6. COLLISION SAMPLING IN A MULTI-COMPONENT VHS GAS

6.1 General Considerations and Approach

The two general considerations in the sampling of collisions are, as
usual, accuracy and efficiency of the simulation. As far as accuracy is
concerned, it is crucial that the method in which molecules are selected
for collisions be proper. The correct collision frequency must be
simulated between various species and, in fact, between the different
portions of the velocity phase space for the various species. Furthermore,

this frequency of simulated collisions must remain correct without any
requirements put on the velocity distribution function; it certainly must
not be assumed that there is a Maxwellian velocity distribution.

As far as efficiency is concerned, it is highly desirable to use a
method of collision sampling involving a computational effort which is
proportional to the number of simulated molecules, N, in a cell. Methods
which are proportional to a power of N greater than unity can become
prohibitively time consuming as the number of molecules is increased - a
limit which should be made as accessible as possible for obvious physical
reasons.
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6.2 Collision Sampling for a Single Component Gas

the simplified situation of a simulation involving only one species is

consiaered here. This problem is significant in part due to all the

attention it has received and, as will be seen, it serves as an important

reference case. When there is just one species, then there is just one gas

kinetic cross section (though it is still, of course, a function of

collision energy), just one molecular weight and just one weighting factor
for each cell. In short, just one of everything that has a molecular

subscript. Hence, in this subsection all such quantities will be presented

without subscripts. The most important simplification of having a single
species is that there is just one collision class, i.e., only

seif-collisions of the given species with itself are possible.

6.2.1 Cullisiun Pair Selection

As discussed in Section 1, collisions are sampled on a cell-by-cell

basi.s until the number of collisions simulated is appropriate to the

overall solution time step, Atm. The only spatial requirement placed on

potential collision partners is that they be within the same cell. In

particular, it is not required that they be within a molecular diameter of

each other. (Note that if all pairs of molecules were inspected to find

those that were sufficiently close to each other, this would involve a

computational effort in proportion to the square of the number of molecules

in the cell.) The rationale for this is that the cells should be small

enough so that macroscopic properties can be assumed constant across the
cell. When this is the case, then a molecule within the cell can be

considered typical of a molecule which might exist anywhere within the

cell, and molecular location can be ignored when selecting potential

collision pairs.

Spatial consideration aside, the probability of any two molecules

experiencing a collision is proportional to ocr. the product of their

mutual cross section times their relative velocity. This probability is

correctly simulated via an application of the acceptance-rejection

technique. A maximum value for crcr, (ocr)max, is stored for each cell.

(This value is updated whenever a greater value is encountered.) Pairs of

molecules are selected at ranoom from the cell, and ocr for that pair is

caicuiatea. The ratio r, defined by
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r OCr a(46)((rcr)max

is aeterminea. A random variable, 0, is then generated, and the pair of

molecules is accepted as collision partners if r is greater than 0. This

proauces the proper relative collision probability without regard to the

existing velocity distribution function.

6.2.2 Collision Time Counter for a Single Component Gas

The volumetric collision frequency for a single component gas, u,

(collisions per unit volume per unit time), is given by

v = An2<yCr>  
(47)

2 r

where, as in Section 2, n represents the number density of the species, and

<acr> is the average product of collision cross section and relative

velocity. At first inspection, it would seem from Eq. (47) that a correct

simulation of collision frequency would require evaluation of <azcr>, which

would mean that all pairs of molecules in a cell would have to be
considered. Such a procedure involves a computational effort proportional

to N2 and Is to be avoided, if possible, in preference to a method which is

proportional simply to N. The alternative approach, introduced by Bird, 1

is the time counter approach. For each collision a time counter, tc, is

incremented by an amount which depends on the relative velocity of the

collision. Collision sampling continues in a cell until its time counter

has been advanced beyond the overall flow simulation time, at which time

the code proceeds to the next cell (which has its own time counter). The

time counter increment, Atc, is given by

2Atc  = 2 (48)Vn 2orcr

where V is the cell volume and n is the species number density given by

NW (49)n = V '(9
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with W being the weighting factor for the species. It should be stressed

That Eq. (48) applies for each real collision. As is discussed in

Subsections 3.4 and 5.4, each simulated collision corresponds to W real

collisions, so when a simulatea collision occurs the actual applied

increment to cc is W times the value given by Eq. (48). A demonstration of

the validity of Eq. (48) is given in Ref. 6.

6.3 Collision Class Sampling in Gas Mixtures

The above proceaure for a single species gas can be extended to a

multi-component mixture via consideration of distinct collision classes.
in this approach, collision classes are aefined by the colliding pair

ineniities. Hence, if there are p species in the simulation then there are

p(pil)/2 collision classes, which can be identified by the subscripts of

the corresponding molecular pair. (The number of classes is not p2 since

the oroer of molecule specification is not taken to matter in determining a

collision class. Hence, the class identified by the subscripts ij is not

(istinct from the class identified by the subscripts j,i.)

In collision class sampling each collision class is sampled

separatoly, and the collilsion sampling in a cell is not complete until all

classes have been considered. Each collision class has its own stored

value of (Oijcr)max and its own separate time counter, tcij. It can be

snown that the appropriate time counter increment in this case is

at =,j (50)cij ninjVaijer

where, as before, 6ij is the Kronecker delta which is unity for i-j and
zero otherwise. As in the previous section, the above increment applies

!or each reai collision. A simulated collision usually corresponds to WL

real collisions, where WL is the lesser of Wi and Wj (see Subsection 5.4),

so when a simulated collision occurs, the applied increment to tcil is WL

times the result of Eq. (50).

6. Elgin, J. B., "Getting the Good Bounce: Techniques for Efficient
Monte Carlo Analysis of Complex Reacting Flows", Spectral Sciences,
inc. Report. No. SSI-TR-28 (1983).
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6.4 Global Collision Sampling in a Gas Mixture

Although the procedure aescribed above is quite reasonable for, say, a

two-component mixture, it becomes exceedingly complicaten as the number of

species increases. For 10 species, for instance, the program must loop

over 55 distinct collision classes for each cell, and storage must be

allocated for 110 quantities in each cell. As the number of species

Increases, the storage requirement for the collision sampling constants

quickly becomes greater than the storage required for the molecular state

vectors! The obvious simplification is to search for a technique where

collisions are simulated simultaneously for all collision classes, with

each class having its proper relative probability of being selected. The

overall collision sampling then continues until a single time counter

indicates that sufficient collisions have been sampled in the current time

step ano celJ.

6.4.1 Global Collision Time Counter

It molecular pairs are selected for collisions such that the various

collision classes automatically appear with the proper relative frequency

(see below), then it is not necessary to consider separate time counters

for, all the various collision classes. One approach that could then be

applied is to ieep a collision time counter for just one collision class

ana increment it when collisions of that class occur. If the various

collision classes are being selected according to their correct relative

frequency, tnen simulating the proper frequency for one collision class

wilt ensure, in the long run, that all collision classes are occurring with

ihe correct frequency. A disadvantage with this approach is the necessity

of making an arbitrary choice for the collision class which is to have a

time counter. Furthermore, there may be no good choice for a reacting flow

where the dominant species can vary strongly from place to place.

(Clearly, one would not want to select a class of collision that does not

occur in a given cell, since the result would be a never-ending sampling of

collisions of other classes.)

The preferred approach is to define a global collision time counter,

tg, which is a weighted average of the time counters of all collision

classes; i.e.,

p i

tg =Dljtcj (51)
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where

p i

17 = 7 D. (52)
.i=lj*=l

and the Dij are non-negative coefficients which can be selected at will.

Nuie that in this formulation every collision class will result in some

increment of the global time counter (unless Dij is zero for that class),

so the colision sampling frequency is not dependent on any one collision

class.

it remains, of course, to specify the Dij. A very convenient choice

is given by

Dn (53)
1 + j

Firstly, Eq. (53) is convenient because it tends to make the collision

classes with the higher collision frequencies count more, resulting in goou

statistics for tg irrespective of cell location. (Note that Dij is cell

aependernt since the species number densities are cell dependent.)

Seconuiy, Eq. (53) results in a particularly convenient form for tg. The
normatization factor given in Eq. (52) can be summed analytically to give

p i
tg -2 - * . - t (54)
T12 ~L + 6i cij

i=I j=l

Hence, a collision of class ij, which would produce an increment of Ati j

to its own time counter produces an increment At to tg given by

,-g = 2 nj _Atcij  (55)
atg n2(1 ij

where, again, n is the total number density of all species in the cell. If

Eq. (50) is substituted into Eq. (55), the result is
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2
atg 2 (56)Vnl2 Oijcr

Equation (56) is extremely significant since it recaptures the precise form

ol the time counter increment for a single species (Eq. (48)), but
indicates that it is completely valid for a multi-component mixture so long

as the various collision classes are sampled with the proper relative

frequency.

6.4.2 Collision Pair Selection in Multi-Component Mixtures

When considering selection of collision pairs, it is crucial to

remember the aistinction between real and simulated molecules discussed in

Subsection 3.4. Given two simulated molecules selected at random from

within the cell, the probability of their having a real collision is

proportional to WiW.Oijcr- However, real collisions cannot happen

individually; they come WL at a time, where WL is the lesser of Wi and W j.

Hence, wnen a colLision is decided upon in the program, WL of them will

occur. To compensate for this, potential collision pairs should be

accepted for a collision according to the size of Q given by

Q WuijjC r  (57)

The relative frequency of real ij collisions will then be proportional to

the product QWL (the relative probability of a pair being accepted for a

collision times the number of real collisions occurring when the pair is

accepted), which is the desired relation. Selection of collision pairs

with the correct relative frequency then assures that incrementing the

global time counter as discussed above will give a statistically correct

sampling of all collision classes simultaneously.

6.4.3 Summary of Collision Sampling in Multi-Component Mixtures

The results of this subsection can be summarized via the following

procedure for the sampling of collisions:

a Each cell has a (current) maximum value of Q, Qmax' that has
been encountered so far in the collision sampling process.
Whenever a larger value is encountered, QnIax is set equal to
that larger value.

- 32 -



* Each cell has a current value of the global time counter, tg.

* Pairs of simulated molecules are selected at random from all

molecules within the cell.

e For each pair, Q, (as defined by Eq. (57)) is computed.

* The ratio of Q to Qmax is computed, and a random variable is

generated. The pair is accepted for collision if the random

variable is less than that ratio. (If the pair is not

accepted, then another ranaom pair is selected. The process

continues until a pair is accepted.)

e For an accepted pair, the collision mechanics are computed as

described in Section 5.

e The global time counter is incremented by WLAtg, where atg9 is
given in Eq. (56).

* The process continues until the global time counter goes

beyond the overall flow time. At that point the collision

sampling is commenced in the next cell.

* When all cells have had collisions simulated, then the code

proceeds to the translation portion. (See Sections 1 and 8.)

6.5 Deviations from the General Procedure

There are some exceptions to the above relations which have been added

to SOCRATES in order make it more efficient. These exceptions are

aescribed in the following subsections.

6.5.1 Cell Specific Atm

Before collisions are simulated in a cell, the mean residence time of

molecules in the cell is estimated using the cel dimensions and the

molecular velocities. When collisions are simulated in the cell, it is

done for an increment of the global time counter that is 20% of this mean

residence time (but no less than At.). Collisions are not again simulated

in the ceil until the overall flow time has caught up to the gJobal time

counter tor the cell.

The major reason for doing this is to recognize that some cells will

teno to have their molecules remain in them much longer than others. Cells

which have longer molecular residence times will tend to have molecules
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which experience more collisions within the cell. When the number of

collisions per molecule becomes sufficiently large, it can be assumed that

the molecules in the cell equilibrate with each other, and the equilibrium

sampling procedures described in Section 7 can be applied. Since 'lese

relations are much faster than direct collision sampling, it is highly

aesirable to apply them whenever they are valid.

For unsteady simulations the cell specific Atm is not applied since it

might result in a temporal blurring of the solution.

6.5.2 Relaxation of Qmax

The current value of Qmax in a cell is reduced by a factor of 0.95 if

20 or more potential collision pairs are rejected in a row. The rejection

of collision pairs can become the most time-consuming part of the

simulation, and a large value of Qmax exacerbates the problem. This change

means that a cell is not permanently penalized for a single event that once

occurred in it, but the change in Qmax is not so great as to invalidate the

pair selection probability. This modification can, under some collision-

oominated circumstances, result in an order of magnitude increase in

computational speed.

6.5.3 Maximum Time Counter Increment

Since t g is inversely proportional to relative velocity (Eq. (56)),

when a very low velocity collision does occur, it can result in very large

increment to the collision time counter, which effectively turns off

collisions in the cell for a long time. Although this is statistically

proper in the long run, it can result in a substantial statistical

fluctuation in the short run. The codes do not allow a collision time

increment to be greater that Atm, the overall step that is used in the

solution.

The limitation on At is achieved by decreasing the weighting factor

of the collision below the weighting factor of either of the two colliding

molecules. The maximum collision weighting factor, (Wclmax. is given by

(Wc)max latmVn2 gijcr (58)
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The weighting factor that is applied to a collision is, therefore, the

smailer of JWi , Wi, (Wc)max. It we represents this value, then a

coiiision counts as Wc events. In order to maintain an overall correct.

simulation, the Q described in Eq. (57) is actually given by the relation

Q WLWL iJCr (59)

WC

ana the time increment applied to the global time counter Is WCtg. (The

two molecules then have their state vectors updated as a result of the

collision with probabilities of WC/W i and Wc/W j respectively.) Most of the

time Wc is equal to WL, and this procedure reduces to that given above;

however, the problem of occasional large time increments is eliminated.

6.5.4 Separation of Major and Minor Species

A problem arose when a cell happened to contain a single molecule of

one major species and all other molecules in the cell were minor species

with weighting factors considerably less than that of the first molecule.

(In treating minor species, the ratio of weighting factors may be as much

as 1000 or more.) Since a molecule cannot collide with itself, collisions

between major species could not occur in such a cell. The result was that

the contribution of major species collisions to the overall time counter

were unobtainable; ana the entire collision time increment had to be made

up with collisions between the single major species and one or other of the

minor species. (Collisions between minor species were rare since pairs are

selected with a probability which is proportional to the greater weighting

factor - see above.) The result of this problem was that vastly too many

collisions were simulated between the major and minor species. This was

both unphysicai and numerically inefficient.

The solution to the problem is twofold: 1) Logic is in the modules to

recognize when this problem occurs; and 2) The global time counter is

redefined in such situations. The different time counter is achieved

simply choosing a different definition for the Dij coefficients appearing

in Eq. (51). Rather than taking a weighted average over all collision

classes, it is possible to take a weighted average over just those

collision classes which involve a collision between a major and a minor
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species. It n, represents the total major species number density and nj

represents the total minor species number density, then Di3 is defined for

Lhis case to be

Dij = nin j  , (60)

rather than the value given in Eq. (53). The implied increment for the

global time counter is given by

Atg n(61)Atg VnlnJa'ijcr

This counter is then only applied for collisions between the species

declared to be major and the species declared to be minor, but the

increment that is applied is much larger than if the weighting were over

all collision classes. Note that collisions between minor species still

occur - they just don't affect the collision time counter. it should be

stressed that this modification is only applied for the special case of a
cell that has a single major species molecule (defined as a weighting

factor at least ten times greater than that of the other molecules). The

result of this modification was the return of the correct collision

frequency simulation and a removal of a substantial numerical problem.

7. PROCEDURES FOR COLLISION DOMINATED FLOW

One of the major difficulties in the classical Monte Carlo technique

is the attainment of equilibrium, where the collision frequency can become

prohibitively large for a direct simulation. There are two basic

approaches for this problem, and both are utilized in SOCRATES. The

equilibrium modeling is only applied if no products are being introduced

into the simulation as a result of chemical reactions. When such prouucts

are introduced, collisions are always sampled for the full time increment.

The two equilibrium approaches are described below.

7.1 Collision Cutoff Approach

This is the usual method of dealing with a collision dominated flow

field. In this method, collisions are sampled in a given cell only until

enough have been sampled to guarantee equilibrium. Since further
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collisions only result in the maintaining of equilibrium, they need not be

simuiatea. It is necessary, of course, to estimate the actual collision
frequency and keep proper count of the collisions (in particular the

excitations) which are not directly simulated in order to obtain the

correct collision frequency. Once a cell has had its collisions cut off in

this fashion, a flag is set for it. On subsequent calls, the equilibrium

aftermath approach (described in the next section) is applied to the cell.
(The equilibrium aftermath approach also calculates collision frequencies

and switches back to regular collision sampling if it becomes too low.)

7.2 Equilibrium Aftermath Approach

it is possible to avoin sampling collisions altogether if it is known

thac the cell is in equilibrium. This is done by calculating the total

ceJ. energy and momentum, and then selecting post-collision velocities from

the appropriate equilibrium aistribution. Although the principle is

simple, the application is complicated by the fact that molecules in the
ceil do not all have the same statistical weight. In some ways (e.g., the

determination of mean velocity) the statistical weight acts like an
effective multiplication of molecular mass - the greater a molecule's

statistical weight, the greater its contribution to the mean flow velocity.
In other ways (e.g., the assignment of post-collision thermal velocities)

the statistical weight does not affect the result - a light molecule should

generally have a large thermal velocity irrespective of its statistical

weight.

The second difficulty with the formulation of this approach is the

necessity for constraining the total energy and momentum to match the

pre-collision values. Hence, it is not proper to calculate the initial

energy and then simply sample from Maxwellian distributions with the same

mean energy, since such a aistribution has a finite probability of
prouucing a molecule with any energy - and the net result would be an
unacceptable divergence in the cell energy and momentum from the initial

values. Both of these problems are avoided in the steps enumerated below.

The method is implemented by calculating the total momentum and energy
in the cell and then "peeling off" one molecule at a time from the others.

The ,nternal mode energy and energy of relative motion for that molecule

(rela ive motion with respect to the remaining molecules) are selected from

equilibrum distributions, except that. a scale factor which is proportional
to temperature is temporarily left undetermined. The process is repeated
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seouentially until all energy modes have been assigned values, and then the

overall multiplicative constant is chosen to match the known total energy

ot the system (thus determining the temperature).

Ea(.h molecule is then assigned velocity components which e

consistent with the known relative velocity between it and the remaining

molecules; and then conservation of momentum determines the mean velocity

of the remaining molecules. Again, the process is repeated sequentially

until all velocities and internal energies have been assigned.

7.2.1 Conserved Quantities

The total energy and center-of--mass velocity are directly computed via

the following procedure:

1) The following sums are evaluated, summing over all the simulated

molecules in the cell:

S1  = YWimi (62)

S2  = z Wimiui , (63)

S = ZWimivi ,(64)

S4  wimiwi  , (65)

S5  = Wimj(u2 + v+ w) (66)

S6 = WiEI , (67)

- 38 -



where Wi , mi and Eli are the statistical weighting factor, the

mass ana the internal energy. respectively, of the ith molecule;

ana ui , vi and wi are its velocity components.

2) The center of mass velocity components, u * v and w *, are

computed via:

u =$2/S1  (68)

v = S3/S1  (69)

and

w = S4 /S1  (70)

3) The total translational energy of relative motion between the

molecules, Etrn, can be represented by:

Etrn = Wimi((u i - u)' + (vi - V2 + (wi - w*) 2 ]  (71)

although it is more easily evaluated by the mathematically

equivalent expression

L S22 + S32 4 S42Etrn = I[S -S (72)

4) The total cell energy is therefore given by

Etot = S6 + Etr n  (73)

7.2.2 Center-of-Mass Velocity Distribution

Given that a group of N molecules is in equilibrium, it is possible to

determine the form of the distribution function for their mass averaged
velocity, taking into account their different statistical weighting

factors. This relation is most easily demonstrated by relating the

Maxwell ian velocity distribution to the normal distribution of statistics

an then utilizing a basic statistical theorem.
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A variable, r. is distributed according to a normal disaribution if

its probability density function, f(r), is given by

'2
f(r) = exp(- -)/(r-42ff (74)

2a.2

where a2 is the variance of the distribution. (The distribution has been

selected with zero mean since the effect of non-zero means does not

influence the velocity differences which are the goal of this exercise.) A

basic result of statistics is that if r, is selected from a normal
istribution with variance cr and r2 is selected from a normal distribution

with variance a2 then the variable r3 defined bywith ariace i2'

r3 = ar, + Pr2  1 (75)

will follow a normal distribution with variance 2 where

33

If it is recognizee that a normal distribution is the same as the

Maxwellian distribution for a single velocity component, then this result

implies the distribution for the center-of-mass velocity components

obtained by averaging over N molecules as in Eqs. (68) - (70). The result

is that this mean velocity follows a Maxwellian velocity distribution

appropriate to a "super" molecule whose mass. ms , is given by

N N

= ( Wzmi) 2 / ( wimi) (77)
I=1 i=1

(The temperature of the distribution, of course, is the same as that used

to select the constituent molecular velocities.) Although Eq. (77) is not

intuitively obvious (to these authors, anyway), it does yield some expected

limits. If all of the weighting factors are the same, then m. is the sum

of the masses of the individual molecules. However, if one molecule's

weighting factor is much larger than the others (resulting in the
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center-of-mass velocity of the group being essentially equal to that

molecule's velocity), then the distribution of center-of-mass velocity is

the same as the distribution for that one molecule.

7.2.3 Molecular Relative Velocity Tistribution

The relative velocity between an individual simulated molecule

(referred to as "molecule j") of mass mj with respect to the center-of-mass

velocity of N other molecules will, therefore, have the same distribution

as the relative velocity betwet:a that molecule and another molecule of mass

ms. It is a well known result that this velocity distribution is a
Maxwellian distribution appropriate to a molecule with a reduced mass, pj,

given by

mms

J mm (78)

Put in terms of the chi-square distribution which is used extensively in2
the Monte Carlo model. u 2 (the square of the relative velocity between

molecule J and the center-of-mass velocity of the other N molecules), can

be expressed

-~s ksXtj ,(79)Pis

where Xtj is a variable selected from a chi-square distribution for the

relevant three translational degrees of freedom. Lk is Boltzmann's

constant, an T is the (as yet undetermined) temperature.]

7.2.4 Translational Energy of Relative Motion

The total translational energy of the molecules (which can be

expressed as in Eqs. (62) - (71) above, summing over all N+l molecules) can

be algebraically recast in a form which specifically shows the contribution
of relative motion between molecule j and the N other molecules.

Specifically,

E +1 2 (80)
N+l + js
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in Eq. (80), EN is the translational energy which would result it only the

N molecules were included in the previous sums, and EN+ 1 is the value

obtained with all of the molecules. The factor in the difference, f3, is

the "reduced weighted mass" between molecule j and all of the other

molecules, i.e.,

s w-W.
SJ _ siWimj (8)

where S1 is as defined in Eq. (62), applying the sum to the N remaining

molecules. It is crucial to note that ms , as defined in Eq. (77),

aetermines the distribution of relative velocities between m3 and the other

N molecules; but Yj, as defined above, determines the amount of energy

associated with that relative velocity. Combining Eqs. (79) and (80) gives

the translational energy contribution, Etj, as

1Etj ( 'kT) j Xtj (82)
PIs

Note that this effectively gives a weighting factor associated with the

translational energy contribution of molecule j of nj/pj, .

7.2.5 Determination of Temperature

The internal energy associated with molecule j, E/j, can be

represented simply by

E13 = ( IkT)W Xj , (83)

where XKj is a variable selected from a chi-square distribution with the

number of negrees of freedom appropriate to molecule j's internal modes.

As liscussed above, this process is then repeated sequentially for each

molecule in the cell. Note that "N" in the above relations refers to all

remaining molecules which have not had their energies determined yet. This

means that ms, for instance, changes with each molecule since it is defined

via a sum over these remaining molecules. The last molecule has no
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translational energy of relative motion associated with it since there are

no remaining molecules for it to be moving with respect to. It does, of

course, huve internal energy.

Summing ail of tae Etj and Ei3 and equating them to the known total

energy Etot (as given in Eq. (73)) then determines the temperature of the

system. it is noteworthy that this temperature is not determined by the

total energy of the system, but also by the statistical sampling process.

This is consistent with the fact that any temperature could result in the

particular- observed velocities; aithough some temperatures are much more

ilkely to produce them than others.

Once the temperature is defined, then the sequential relative2
veiocities squared us (Eq. (79)) and internal energies (Eq. (83)) are

is
oeterminea. It is then a simple matter to go back and apply these values

to select individual molecular velocity components via the same procedure

cescribe in Section 5.

7.3 The Numoer of Collisions Required to Achieve Equilibrium

The number of collisions required to achieve equilibrium depends on

the moaci being employed and the criterion for equilibrium. (Equilibrium

is approached asymptotically and, as such, could be regarded as an ideal

limit which is never realized.) The model being employed, as discussed in

Subsections 2.4 and 5.3 is that of Ref. 4. In this "statistical collision"

model, a fraction, a, of the collisions are taken to be "perfectly

inelastic"; that is. in such collisions all translational and rotational

energy of the colliding molecules is made available for distribution to the

post-collision state vectors, taking into account the number of

translational and internal degrees of freedom. The rest of the collisions

are taken to be completely elastic, with no interchange taking place

between the translational and rotational energy modes. The parameter of

the model, a, should be chosen to match available data for rotational

reiaxation.

Within the context of this model, the question to be addressed is how

many collisions are required in a cell before the mode] predicts that it is

essentially in equilibrium. The question can be made independent of a if

it is phrased: "How many inelastic collisions per molecule must be

simulatea before the cell can be considered to be in equilibrium?". This

question is suitable for direct investigation with the model, and a test
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calculation was performed to answer it. The test calculation indicated

that the equilibration is 90% compoete after approximately 3.08 inelastic

collisions (on the average) for each molecule. This seems to represent a

-easonable point at which to say that further collision simulation is

unnecessary, although the cutoff is of necessity somewhat arbitrary. This

number of inelastic collisions serves as a useful benchmark in the

comparison of the collision cutoff and equilibrium aftermath approaches,

and it also serves to define when the application ot the equilibrium

aftermath approach is valid.

7.4 Method Comparison

Test runs were run where the collision cutoff approach was uti.izes

for 3.08 inelastic collisions per molecule. (Since a = 0.2 was used, this

corresponded to about 15 total collisions per molecule.) The time required

to compute the relaxation via collisions was then compared to the time

required to utilize the equilibrium aftermath approach. The result was

that the equilibrium aftermath approach was almost an order of magnitude (a

factor of 9) faster in achieving the same result. This ratio will no doubt

vary with computer and specific calculation being performed; but it is

nighly likely that the equilibrium aftermath will always come out

considerably faster. It is for this reason that the method was implemented

in SOCRATES.

8. MOLECULAR TRANSLATIONS

As discussed in Section 1, an essential element of the direct

simulation Monte Carlo method is the periodic advancement of simulated

moiecuies along their trajectories. Formally, this is accomplished by

upuating the position and velocity elements of the state vector. The

specific procedures for doing this depend on the coordinate system in which

the state vector elements are represented.

8.1 Molecular Translations in Cartesian Coordinates

In Cartesian coordinates, the translation is very direct. Let x, y,

ana z represent the position coordinates and u, v, and w the corresponding

velocity coordinates. If initial and final values of the state vector are
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represented by a 0 and 1 subscript respectively, then the updated state

vector elements corresponding to a translation through a time step At are

x, x 0 + Uot (84)

a= YO+Vot ' (85)

z, O +0 *Woat ,(86)

U u 0  , (87)

v = v0  (88)

WI w0  (89)

8.2 Molecular Cloning

When a simulated molecule is translated from one cell to another, the

weignting factor for that species will generally be different in the new

ce l. Since it is the number of real molecules rather than the number of

simuiateu molecules which must be preserved when crossing cell boundarites

(scatist[cally, at least), it is necessary to correct for the distinct

weighting factors (see Subsection 3.4).

IL the weighting factor before translation is WO . then the simulated

molecule represents that many real molecules. If the weighting factor in

the new cell is W1 , then WO/W1 simulated molecules would be required to

represent the same number of real molecules in the new cell. If this ratio

were a whole integer, then this could be accomplished by introducing that
many "clones" of the simulated molecules in the new cell. That is, WO/W1
simulated molecules would be placed in the new cell, all with the same

state vector.

When the number WO/W1 Is not an integer (the usual case, of course),

then the cloning must be done on a statistical basis. So. for instance, if

Wo/W I were equal to 2.7, then 30% of the time two clones would be produced,
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anu 70% of the time: three clones wouid be produced. Note that the ratio

maV be less than unity, ana the molecule may not be introduced into the new

cell at all. (In which case the molecule is removed from the simulation.)

Cloning is a necessary evil inherent in a system with spatially

varying weighting factors. it enables such a system to maintain the

statistically correct flux of mass and momentum across cell boundaries, but

it misrepresents the flux of randomized or thermal energy. This can be

seen by an extreme case where a very large number of clones is produced

when a simulated molecule crosses a cell boundary. The resulting molecules

in the new cell have the correct mass and momentum flux, but since they all

have precisely the same velocity they have a null relative velocity rnd,

therefore, a zero temperature. If the weighting factors are not too

different between adjacent cells, then the errors introduced by this

process are acceptably small. However, it does mean that one cannot

arbitrarily improve statistics in one portion of the solution region by

selectively reducing the weighting factors there. This was a difficulty

which was encountered in the early stages of the direct simulation Monte

Carlo method while trying to improve statistics along the axis of

axtsymmetric simulations, since the cell volumes (and, therefore, the

sample sizes) tend to be smallest on the axis.

As was the case for simulaten molecules produced via chemical

reactions, it is possible for the weighting factors between successive

cells to be so different that a prohibitively large number of simulateu

molecules woula be required to produce the same number of real motecules.

The codes sense when a disproportionate number of simulated molecules are

being proauced for a given species and cell and adjust the weighting factor

automaticaliy. As the weighting factor is increasea, a proportionate

fraction of molecuies of that species and cell are removen from the

simulation in order to keep the number of real molecules properly

represented. This process enables the weighting factors to seek their own

proper level without a priori knowledge or the solution. (Periodically,

the cells are examined to determine if a certain species has been

underrepresented in terms of its number of simulated molecules. If this is

founo to be the case, then the weighting factor i.s decreased, allowing

weighting factors to float downwards as well as upwards. It is the danger

of weighting factors being too small, causing an overflow of code

(limensions, which is most critical, however.)
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9. INITIAL AND BOUNDARY CONDITIONS

9.1 Initial Conditions

Since the direct simulation Monte Carlo method is inherently an

unsteady technique, an initial state must be specified in order to advance

the solution. For situations where a steady state result is desired, it is

obtained as the long-time solution to an unsteady problem. In this case

the initial conditions have no effect on the eventual solution, but they

may well have an impact on the speed with which that state is achieved.

For steady state solutions, SOCRATES simply starts with an evacuated

solution region. For unsteady solutions, however, it is necessary to start

with a molecular distribution which is representative of the conditions at

the start of the desired simulation. For SOCRATES these conditions

correspond to a uniform flow with the translational and internal modes

being in equilibrium. The specitication of the initial conditions for

unsteady runs, therefore, involves determining the state vector elements

consistent with this condition for the desired number of molecules.

9.1.1 Number of Simulated Molecules and Their Weighting Factors

The desired number of simulated molecules for each species in each

ce!I, MC I is an input quantity. (Typically, simulations aim for a total

number ot moiecules per cell in the neighborhood of 20.) Given the iniLial

number density to be simulated for a species, ni , (which will have been

automatically converted to internal dimensions - see Section 3) the

weighting factor for species i in a given cell is simply

Vni (90)wi  Mc (0

where V is the cell volume. If a species is not initially present in a

cell, then it is assigned an initial weighting factor of zero. If

simulateu molecules come into the cell, the weighting factor from their

place of origin will be used to initialize the weighting factor in the

cell. As the solution proceeds, the weighting factors are automatically

* adjusted to keep the average number of simulated molecules of each species

equa to M(: in each cell.
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9.1.2 (nttiat Positions

rite initiai molecules assigneu to a ceil should have an equai

probaniJity of being piacea in any voiume element of the cell. For tre

aexaiieurai ceils of SOCRATES, this simply involves selecting each of' rle

pos-ti.on elements at ranuom from the range appropriate to ine ceti in
question. That is, the x position is selected via the equation

x= Xm n  xmax xmi n

wrere xm n ann xma x are the positions of the x-faces of the cel I nm

question. The other position elements are selected analogously.

9.1.3 initial Velocity Components

The thermal velocity components for a molecuie in transiationat
equilibrium (neglecting, for the moment, any mean flow contribution) shouid

be selecteu from a normalized Maxwellian velocity distribution, f0(v),

given by

!0 a expi-(av)2 i/-j (92)

eht r e.

Q = -vm/(2Ro T,) , (93)

,i is rie species moi ecti ar weight, R0 is the universai gas consit ant T'
s ne cemperature. Equation (93) applies for each ot Lhe moiecular

vvlocir.v components ano must be sampled three times for eacn molecule that

comprises the initiai state of the simulation. A methoa for airectly
x;i;rup~l-n from this aistribution is

Al = 21ir (94)

A? og (95)

v Agsin(A1 ) (96)
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After the thermal velocity components are determined for each molecule,

then any mean flow velocity is simply added on. The velocities are then

transformea to internal units.

9.1.4 Initial Internal Energies

The only remaining element of the state vector to be specified is the

internal energy. Internal energies for a gas in equilibrium are

aistributea according to the normalized distribution function ff given by

= /2-1cxp(-/2) (97)

2 /2p (y/2)

where t represents the number of internal degrees of freedom for the

species in question, P is the gamma function, and is a dimensionless

internal energy, i.e.,

2E1
2E, (98)

where E, is the internal energy. Equation (97) is a representation of the

chi square distribution for C degrees of freedom; procedures for sampling

rrom this distribution are given in Appendix A.

9.2 Source Boundary Conditions

The introduction of source molecules into the simulation is a boundary

c((uition which cepenus on the specific model for the source in question.

SOCRATES inciuaes a "core flow" source, which describes the contamination

that results from the scattering of the flow from a thruster back onto the

shuttle. For this source, it is important to have a description of the

main exhaust flow away from a thruster. (This is to be contrasted with a

source which describes the direct contamination of surfaces via impact of

exhaust gases. Since the thrusters are not pointed directly at shuttle

surfaces, it- is the smail portion of the flow which ]eaves the thruster at

a iarge angle from the exhaust centerline which is important in this case.)

The plume gases expand upon leaving the exit plane and adopt. an

essentially raoial flow profile over a distance which is on the order of
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exit plane dimensions. Since this distance is small compared to the length

scales of the interaction of the plume with the atmosphere, it is

appropriate to replace the nozzle by a point source af exhaust molecules

traveling at their thermoaynamic limiting speed with an undisturbed number

aensity aistribution given by

B-t (e) (99)
r2

where 8 gives the axial number density aecay and e represents the angie

from the thrust axis. The r appearing in Eq. (99) is the spherical radius,

giving the total distance from the source. The particular form rutr t(e)

that is used in SOCRATES is an asymptotic form of that proposed by BrooK. 7

name y

t(e) = exp(-X 2 1 - cos(e)j) , (100)

2 I C! f , ( 1 0 )
u.,1 (102)

L:tfr 2 tLI+cos(e n ) I Um11-fM2

u...r 2 n

Um L 2 -" (103)

Urn (7 - I )Me2

1 n Ae )2 Ue. (104)
2ff e eUrn

In the above relations, ue , M e , ne and A. denot.e the exit velocity,

Mach number, number aensity ana area, respectively; en is the nozzle

7. Brooi, J. W., "Far Field Approximation for a Nozzle Exhausting into a
Vacuum", Journal of Spacecraft and Rockets, 6, 626 (1969).
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aivergence halt angle, and um and T are the thermodynamic limiting speed

a z the rat o o specitic heats.

In a sotution time step Lt., neeAetm real molecules are introduced.

Eacn moiecuie is assignea an angle e which is chosen to be consistent with

Eq. (100) via

9 = cos- 1 Cilog(1 - C2 9)] (105)

wnere

1

cI  X2 (106)

and

C = 1 - exp(-2X 2 ) (107)

An azimuthal angle is seiectea at random for the molecule, and then

the resuting velocity is represented in the basic Cartesian coordinates

uritizec by SOCRATES. The molecule is then advancen from the source

appropriate to a speed of um and a time increment which is a rundom

traction of atm. The process is repeated until the proper number of

simuiateu molecules of each exhaust species have been introduced.

9.3 Atmospneric Boundary Condition

The atmospheric boundary connition for SOCRATES is that molecules

snuiu:( be ink.roauceu into the solution region from the outer boundaries in

sucn a way as to simulate the undisturbed ambient flow outside of the

sout..iun region.

9.3.1 Molecular Flux Across a Surface Element

The relations for molecular flux across an infinitesimal surface

etement are given in Ref. 1. If q is the molecular flux (molecules per

unit area per unit time) crossing a given surface element, then q is given

by

n- -(exp(-w2)/4f + wtl+erf(w)j) , (108)
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where

A = -4m/2RoTm  , (109)

aid

w = Aucos(e) (11!0)

In these relations, n. ana TD represent the ambient number aensity anu

temperature for the species in question; m represents its molecular weight;

u. represents the mean flow velocity; and e is the angle between the inward

surface normal ana the mean flow direction. The flux given by Eq. (108) is

zlon-zero for all values of 9, reflecting the distributiun of molecular

velocities. However, it does become exponentially small for large negative

w. (Note that these relations must be applied on a species-by--species

basis: each species has a different spread in its velocity distribution by

virtue of its "iffoent molecular w'!ght.)

The application of Eq. (108) to the flat surfaces comprising the

SOCRATES outer boundary is direct, since e does not change along Lhe face.

The total number of molecules to introduce for a time step of Atm is simply

qatmA, where A is the area of the flat face in question. Since the flux is

constant over a flat face, each position on the face is equally likely as a

point. for molecular entry. Hence, for a flat face, the starting molecular

position can be simply obtained by selecting a point at random on the face.

9.3.2 Incoming Molecular Velocity Components

For each molecule that is introduced, a local orthogonal cooruinate

system is set up such that one direction is in the direction of the inward

surface normal. Velocity components are first determined in terms of this

local coordinate system and then transformed to the main code coorrlinate

system. In the local coordinate system, the velocity components parallel

to the surface are determined as aiscussed above for molecules in the

initial condition. The inward component of' velocity must be selected in

proportion to the distribution h(v) given by

h (v) = v exp(-La(v - <v>)1 2) , (Ill)
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where <v> is the component of the mean flow velocity in the inward normal

airecrion ana a is as given in Eq. (93). It is possible for <v> to be

negative, but all incoming molecules must have a positive v value by

aefinition. Hence, this distribution is only sampled for positive values

of v. The sampling is done via the acceptance-rejection technique.

10. STATISTICAL SAMPLING OF OUTPUT

10.1 General Considerations

It is safe to say that the molecular state vectors as they exist in

the computer do not comprise the usual desired output of the procedure.

With rare exceptions, it is the macroscopic quantities such as temperature,

iensity, mean flow velocity, etc. which are of interest - not the

microscopic quantities represented by the state vector of an individual

simujated molecule. The generation of the desired output requires that the

macroscopic quantities of interest be represented in terms of statistical

sums o! rhe available microscopic quantities; ano it is the main purpose of

this section to present these correspondences. All sums are kept in terms

o "real" moiecules and events, i.e., the current weighting factors are

incluued in the sums. This is essential since the weighting factor

determines the statistical importance of a given molecule. Since the

weighting factors are dynamically and unpredictably adjusted as the

soiution progresses, it would not be possible to go back and add in the

effect of weighting factors a posteriori.

fn general, it must be decided ahead of time exactly what output is

(Iesire(I from the code, and, therefore, what statistical sums should be kept

to generate it. There is a vast amount of potential information in the

simulation, and it is not reasonable to store all possibly interesting

quantities in all runs. On the other hand, it is wasteful to completely

rerun a case just because the user decides there was an additional quantity

ce was interestea in. The selection of output for a given run, therefore,

unavoinably requires user judgment. Once the user has decided upon the

'fquir'eu output, the determination of which statistical sums are required

is done automatically by the code. Care is taken to make sure that a

statistical sum is not duplicated internally if it is required by more than

one requesten output quarI ty.
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Some initial words of caution are required. By its nature, the (lirect

simulation Monte Carlo method works with far fewer molecules than nature

does, and it, therefore, exhibits considerably greater statisticai

variation in its macroscopic predictions. To reduce these variations, the

coae is run repeatedly for the same case, increasing the statistica) base

from which the macroscopic output is derived. Useful results can usually

be obtained with a modest computational effort. However, this statument

must be tempered by a realization of the convergence rate for Monte Cario

sampling. Basically, the statistical error in the output converges as one

over the square root of the sample size (or run time). Hence, it a

soiution looks good, but the user decides he would like one more

s~gnif:cant digit (i.e., he would like the statistical error to be reduced

to 0.1 times its current value) -it would require that the run time be

increased by a factor of 100 It can be seen that the aesire to more

accuracy can quickly turn the most efficient code into a morney gobbiing

nightmare. When using a Monte Carlo technique, one must accept some

statistical scatter in the output.

10.2 Sampling of Instantaneous Volumetric Output Quantities

[nstantaneous volumetric output quantities, such as density,

temperature and !elocity, can be determined by examining the molecular

state vectors at a particular time in the simulation. The code pauses in

the simulation and uses the molecular state vector elements to aud values

to the statistical sums appropriate to the various cells and the particular

time that it paused. It. then proceeds with the simulation until the next

sampiing time. As the code goes through its successive runs, it stops at

the same points in the simulation every time and adds to the statistical

base tor the sums. (For steady state cases, it simply does it repeatedly

after the initial transient has died down.) The items listed below, with

their statistical definitions, are selectable as output requests in

SOCRATES. Summations are performed over all applicable simulated

molecules, which include Nru n separate runs.

9 TOTAL NUMBER DENSITY

= (112)

VNru n

e MEAN MOLECULAR WEIGHT
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m $36 (113)
S,

* x VELOCITY COMPONENT

Vx= S (114)
S 6

o y VELOCITY COMPONENT

S4Vy = - (115)
$ 6

o z VELOCITY COMPONENT

vz  = 
(116)

S6

* OVERALL TRANSLATIONAL TEMPERATURE

1 S'2 + S4
2 + S5 2

TRoS 1 (S2 - S6  (117)

* TRANSLATIONAL TEMPERATURE IN jTU DIRECTION

1 
S8

2

T -(S7 - ) (118)

* INTERNAL MODE TEMPERATURE

2S (119)

wnere the indicatea sums, S are defined by:
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S1  = TW i  , (120)
i

S 2  = ~ ii 2i ~ 31  *(11

S3  = Wimivxi , (122)

$4  = (Wimiv , (123)

1

S5 = Wimivzi ( (124)

I

5( = Z Wimi (125)

i

7  = Wimiv (126)

S 8  - Z Wjmivji . (127)

S9  = WiEi (128)

and

Slu = w i (129)

With the exception of Eq. (113), all of the above quantities can also be

defined and calculated for any specified species. The sums are the same

except that only molecules of that species are considered. Before printing

output quantities, they are always transformed to standard dimensions from

the internal dimensionless variables.
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10.3 Sampling of Time Averaged Output Quantities

Some aediLtional quantities o' inter'est are not sampled at a separate

sampiing time as cescribeu above, but rather as the simulation evolves.

Examples of such quantities are collision rates, reaction rates, mean

veiocities between molecules, etc. For the most part, rnese quantities
(leperil on the relative sLate of more than one type of molecule, ana they

are by their nature expressea as average values over a finite time
intervaj. The formulas for calculating these quantities are no more than
event counters, ana will not be included here. The following (quantities
are currently avaiiable as output:

0 Mean Relative Velocity Between any Two Species;

* R.M.S. Deviation of Mean Relative Velocity Between any Two
Species;

* Mean Proouct of Cross Section Times Relative Velocity Between
any Two Species;

0 Collision Rate between any Two Species;

* Reaction Rate for any Chemical Reaction;

* Reaction Rate tor any Photochemical Reaction;

* FiUx Rate for any Species on any Surface Element.

Fhe sampling for ail but the last of these quantities occurs in the

-o-,i;son simulation routines. As pairs are considered as possible

collision partners, statistics are kept to generate the first three
quantiLies. Statistics on collisions and reactions are kept as they occur,

ano the iasc quantity is determined in the molecule advancement routines.

!I. SURFACE DEFINITIONS AND INTERACTIONS

An essential element of the contamination problem is the presence of

soivu surtaces in the flow field. This section discusses how the surfaces

are repr'esentea aria how the interactions of the gas molecules with the
surtaces are recog;nized, simulatea, and recorded.

- 57 -



ii.i Snuttle Representation

A s Lilp iit ed ves IOft 0t the shut tLIe has been constructed. This n:ou e
was Intentuionaily abbreviated foro the initial computations. The moael
tiescription is simply a data file, which is easily replaceu by availabie,
more detailed, shuttle models. The initial model for the shuttle geometry
was aesignea to form a completely closed (i.e., no "holes"),
non-uverlapping surface which approximates the shuttle geometry with a

minimum number of surface elements. The surface elements are simple
geometric shapes such as rectangles, triangles, disks, cylinders, and
cones. This first model employs tour surface types with a total of 11
surface elements. In particular, the wings are represente(d by trian-ular
planes which currently have no thickness, but necessarily have a top and

bottom. The tail is modeleu using a combination of four triangular planes,

the shuttle body as the outer surface of a cylinder, the shuttle nose as a
cone, ana the aft end of the shuttle as a disk. The model is specified in
cartesian coordinates with the origin placed along the axis of the cylinder

at the center of the shuttle. This preliminary model is shown in front,

top, anu side views in Figures 4 - 6, respectively.
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FRONT VIEW
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Figure 4. A Frontal View of the Crude Shuttle Model Designed for
Testing of the SOCRATES Model.
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TOP VIEW
u
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Pigure 5. A Top View of the Crude Shuttle Model Designed for Testing
of' the SOCRATES Model.
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SIDE VIEW
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Figure 6. A Side View of the Crude Shuttle Mode] Designed for

Testing of the SOCRATES Model.
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11.2 Determination of Surface Intersections

The interaction of species with the shuttle is a crucial portion of

the contamination model, and it has two distinct facets:

1) Calculating the point in space ana time at which a
contaminant molecule makes contact with a shuttle surface:

2) Characterizing what happens to the molecule after contact
(e.g., adsorption, specuiar reflection, diffuse reflection,
etc.).

This subsection deals with the development of an algorithm for the
first point above. The calculation of an intersection point, while

conceptually straightforward, is a potential source of considerable

computational effort. SOCRATES can calculate the intersection point in

space and time for a molecule starting from an arbitrary position and

velocity for each of the simple geometric shapes used in the shuttle

aescription. The intersection routines also return the local triple of

unit vectors at the intersection point which is useful for the calculation

of surface reflections. The procedure will be illustrated for the case of

a rectangular surface element. The surface, as shown schematically in

Figure 7, is defined by the following quantities:

a) A vector, rs, giving the absolute location of the "key
vertex" of the rectangle in code coordinates;

b) An orthonormal triple of unit vectors which define the
orientation of the surface. 1i and 12 define the directions
from the key vertex to the two adjacent vertices of the
rectangle and i3 is the outward surface normal. A right
handed coordinate system is used, so

13= 1 x 12 (130)

c) The lengths, 11 and 12, of the two sides. (See Figure 7.)

If a molecule has a position, rm, and a velocity, vm, then the

analysis for intersection proceeds as follows:

1) The component in the 13 direction of the molecule's position
ana velocity relative to the key vertex, x3 and v3 , are
computed via

x3 = i3 ,(rm-rs) (131)
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and

V3 = 3Vm (132)

2) In order for an intersection to take place on the proper side

of the rectangle, x3 must be positive and v3 must be

negative. It these criteria are not met, no further analysis

is performed.

3) It the above criteria are met, the intersection with the

plane of the rectangle takes place at a time increment, Ati,

given by

Ati = x (133)
V3

4) The position of the intersection point. x1 i and x2 i, relative

to the key vertex is then given by

Xi= ii.(rm + Ativm - (s) (134)

ana

~2

12

I1 _ ............................. ............... ..................................

KEY VERTEX

Figure 7. An Illustration of the Quantities Used to Calculate a

Molecuiar Intersection with a Rectangular Plate.
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xli = 12,( m * Ati~m -s)(135)

5) An intersection with the rectangle occurs if and only if (0 5

Xli :5 f) and (0 5 x2 i s 12).

The procedure for the othe- surface types is not given here, but it is

quite similar. Each surface is defined by a location vector, a triple of

orientation vectors, and a few pieces of auxiliary information which are

specific to the surface type. The use of simple geometric shapes ailows

the checks for intersection for all of the surfaces to be maae

expeditiously.

There will be thousands of molecules in a simulation, and each one of

these molecules is advanced along its trajectory at every solution time

step. Some check for intersection must be made for each molecule at every

time step. The shuttle is modeled as a combination of several simple

surfaces. Although the initial model does not involve a large number of

surfaces, it is an obvious growth path for the contamination model to use a

more ana more sophisticated model of the shuttle itself. (Other models8

have used hundreds of distinct surfaces to describe the shuttle.) Each

molecule may be checked for possible intersection with every surface

element at every step. It is not even valid to stop checking for

intersections when one is found, since it is the first intersection point

along the molecular path that is the one of interest; there may be more

than one mathematical intersection. Hence, it is desirable to have an

algorithm which does not suffer greatly from a large number of surfaces.

A concept to speed up the calculation of surface intersections was

implementea. An element was added to the state vector to indicate the time

at which a given molecule will experience a surface collision if its

current trajectory is not altered. The element is used as follows:

I) Whenever a molecule is introduced into the simulation, this
element is set to zero. This serves as a flag indicating
that a possible surface intersection has not yet been
calculated for this molecule.

8. Hetrick, M. and Strange-Jensen, D., "Shuttle Computer Model for On-
Orbit Contamination Analysis", Proceedings of the 30th JANNAF Plume
Technology Meeting, CPIA Publication 291, 175 (1977).

- 64 -



2) During collision sampling, whenever a molecule has its
trajectory changed, the state vector element for surface
intersection is reset to zero. This flags the molecule to

have its possible surface intersection recomputed when it is
auvanced along its trajectory.

3) The routines which advance a molecule along its trajectory
examine this element. If it is zero, then all surfaces are
checked for possible intersection. If art intersection is

found, then toe time at which the intersection will take
place is put in the state vector element. If it is
aetermineu that the current trajectory will not intersect any
surfaces, then the value of 102 0 (a computer approximation
for infinity) is put in the element.

4) if it is known that a molecule will not intersect a surface
within the time interval corresponding to the molecular
auvancement, then the molecule is simply moved along its
tLrajectory without further checking of surfaces. This will
be the case for the large majority of molecules which are

inspected.

5) If a molecule does intersect a surface within the current
time interval, then it is advanced to the point of*
intersection. The state vector corresponding to the
pos-refiection conditions are calculated, and the element
corresponding to surface collision time is reset to zero.
The molecule is then advanced along its new trajectory for
the remainder of the time interval, allowing for any new
reflections which may occur.

Another concept that has been developed for speeding up the

caiculation of surface intersections is to surround many surface elements

with an artificial surface such as a sphere. If a molecule starts on the

outsiae of the sphere and doesn't penetrate it, then it cannot hit any of

the surface elements within the sphere. In this manner, the calculation of

intersection for many surface elements can frequently be replaced by the

caicuiation of one intersection. (If the sphere is penetrated, of course,

then the aetailea calculations must then be carried out. The expectation

is, however, that a large fraction of molecules will not need the detailed

analysis.) This concept will be implemented in future code versions if

computationally required.
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11.3 Surface Reflections

Routines were written to describe a diffuse reflection of a moiecuie

from a surface after complete accommodation. This is felt to be the most

reasonable physical model, so it is the natural initial choice. Other

options will be added as the model is expanded.

11.4 Surface Statistics

The purpose of a contamination code cannot be served unless the flux

to, and buildup of, contaminants on the surface elements can be described.

The ability to keep statistics for species fluxes on the various surface

elements is part of the code. The requests are input with the surface

element definitions and involve listing the species for which surface flux

information is desired for the given surface element. The code

automatically sets up the required storage location, advances a counter

whenever a molecule of a selected species strikes the surface element, ard

generates output to show the derived species flux. As part of this

calculation, it was necessary to calculate the areas of each surface

element, so the derivea flux can be given as a number of molecules per unit

time per unit area.

11.5 Interface of Shuttle Model with Calculatlonal Grid

The melding of the three-dimensional Cartesian cell grid structure

with the arbitrary geometry of the space shuttle orbiter (or, more

generally, any spacecraft) posed a problem. The difficulty arose from the

fact that the cell structure is not molded around the orbiter, so the

boundaries of the orbiter do not correspond to cell boundaries.

The cells are used for two purposes in the simulation: 1) to provide

positions for flow field output quantities and 2) to define the location of

possible collision partners for molecules. For either purpose, but

especially for the second one, it is desirable that macroscopic properties

ao not change appreciably across the cell. This is because the only

spatial requirement on two molecules to qualify as collision partners is

that they lie within the same cell; if the cell is uniform, then it is

argued that a sample molecule could equally well be found anywhere within

the ceil, and its precise location in the cell is ignored in the collision
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sampling process. (This assumption is not made arbitrarily, of course; it

results in a substantial computational simplification. See Section 6 for

aetaiis.)

There is a problem with this assumption when pieces of the shuttle

penetrate into a cell. The general collision sampling procedure would

allow, for instance, a molecule above a wing to collide with a molecule

oeiow a wing. It is an inherent contradiction to assume that the contents

of a given ceil are uniform and that a piece of the shuttle penetrates the

cell since the shuttle piece defines a length scale on the order of cell

uimensions.

The resolution that was achieved was to analyze the cell and shuttle

geometries to tag those cells which contained pieces of the shuttle and to

c'sailow collisions in those cells. As the cells become smaller, the

negiecteni collisions become iLnsignificant, so this is formally a source of

error associated with finite grid size (an inherent part of any such

calculation). It was judged better to not allow the very small number of

iegitinate collisions in these cells than to allow momentum transfer

between molecules separated by a solid surface. It is important to

emphasize that this approximation only has to do with molecular collisions.

Direct contamination from a source to a surface still occurs, since it has

nothing to ao with the cell structure at ail.

11.6 Back-To-Back Surfaces

A shuttle surface such as a wing is considered to have negligible

thickness in the first shuttle model, so it is modeled as back-to-back

planar segments; one for each of the two outward normal directions. Due to

the negiect of surface thickness, when a molecule intersects with such a

back-to-back surface, it can potentially bounce back and forth between the

two surfaces inaefinitely without ever moving. The code recognizes this

situation and disallows it.

12. SAMPLE CALCULATIONS

12.1 Case Descriptions

in order to check out the coae and demonstrate some of its current

,;apabiiities, sample calculations were undertaken. The calculations were
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for cases with the simplified shuttle model flying at altitudes of 200,

250, ana 300 kilometers at a velocity of 7 km/s. The shuttle was taken to

be flying at a normal aircraft orientation (i.e., nose into the oncoming

stream) and firing an RCS thruster upward from its nose. The geometry of

the calculations, with the coordinate system, is depicted in Figure 8.

These coorainates are important for the understanding of subsequent

results.

VELocjit

Figure 8. A Schematic of the Sample Shuttle Problem Showing the

Coordinate System and Orientation of the Calculation.

- 68 -



The calculationf were performed for a steadily firing engine of 860

pounds thrust, with an exhaust composition as shown in Table 2. This

composition was chosen to show the specific effect of exhaust species

molecular weight on the development of the contamination cloud. Hence,

light (H2), medium (H20) and heavy (C02 ) molecules were explicitly carried

in the simulation, and all other species were grouped together into a

species called "Other", with a molecular weight given by the mean of all

the remaining exhaust. species.

Table 2. Exhaust Composition for SampJe Calculations.

Species Mol. Weight Mole Fraction

H2 2.00 0.1800

H20 18.00 0.3284
CO2  44.00 0.0472
Other 27.35 0.4444

The atmospheric and calculational parameters used for the three

altitudes are shown in Table 3. The mean free path is actually a code

output variable, but it is an important reference quantity so it is

included in the table. It should be noted, however, that this mean free

path is for the undisturbed atmosphere, and the plume-atmosphere

interaction region is characterized by a smaller value.

An artifice was used to get better statistics on the atmospherically

scattered molecules. An unscattered and scattered version of each species

(H2(U), H2 (S), etc.) was defined, and gas kinetic reactions of the form:

HZ(U) + M 112(S) + M

H20(U) + M H2 0(S) + M

etc. were used. Since the contaminant source introduced unscattered

molecules, the flow field level of H2 (U), for instance, then corresponded

to the portion of the molecular hydrogen which had not yet experienced a

* cotilsion, since any collision would result in the H2 (U) being transformed

into H2(S). Similarly, the H2 (S) represented the density of scattered

hydrogen, and the total hydrogen density was simply the sum of H2 (U) and
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Table 3. Atmospheric and Calculational Parameters for
Sample Calculations.

Altitude (km)
Quantity 200 250 300

Total Density (molecules/cm
3 ) 7.2x10 9  1.9x]0 9  6.5x10 8

0 Mole Fraction 0.58 0.74 0.85

N 2 Mole Fraction 0.42 0.26 0.15

Temperature (K) 855. 941. 976.

Mean Free Path (m) 325. 1410. 4540.

Minimum X (m) -500. -3000. -5000.

Maximum X (m) 2000. 6000. 10000.

Minimum Y (m) -1000. -3000. -5000.

Maximum Y (m) 1000. 3000. 5000.

Minimum Z (m) -500. -3000. -5000.

Maximum Z (m) 2000. 6000. 10000.

Number of Cells 2700. 3888. 3888.

H2(S). The advantage ot this artifice is that it allows the contamination

trom scattered species to be calculated, even though the unscatterea

species densities are much greater than the scattered species densities in

regions aajacent to the firing engine. By separating out the important

scattered portion, which would otherwise be dominated by the unscattered

portion, better statistics are obtainable on the desired quantities.

12.2 Contamination Cloud Results at 200 Kilometers

The presentation of quantities as a function of three spatial

dimensions is always somewhat difficult. The approach that has been taken

is to show isodensity contours for various planes. The coordinates defined

in Figure 8 are used, and emphasis is placed on the scattered species,

since they are the contamination source which is being accurately

represented in this calculation.
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Figure 9 shows isoaensity contours for the scattered H2 molecules for

a piane perpendicular to the oncoming wind direction at the shuttle

location. The molecules are more numerous above the shuttle, as is to be

expected from the direction of the firing, but a significant density has

made it beneath the shuttle. Figure 10 shows the same quantity for a plane

0.5 kilometers in front (upstream) of the shuttle. The contours have

spread out, indicating a more even distribution. Figure 11 shows the

situation at 1.5 km upstream, where the scattered H2 density has become

essentially constant. The contours are ragged since small statistical

fluctuations become very important in defining contour locations for a

nearly constant function.

Figures 12 and 13 show isodensity contours of scattered H2 and CO2 ,

rcspcctively, for a plane at a constant Z location of 1 km above the

shuttle. In these figures the wind is approaching from the right. The

comparison of the two figures reveals more widely spaced contours for the

scattered H2 than for the heavier CO2 . These figures quantitatively

demonstrate what could have been predicted qualitatively; namely, that H2

is more effective at traveling upstream than the other two molecules. This

is parti aily because H2 has a smaller cross section (and, therefore, a

greater mean free path) than the other molecules, but mainly because its

smaiier molecular weight results in greater molecular veocities. It makes

the most of the time it has between collisions. This point is made more

oirectiy in Figure 14, where the number densities of the three scattered

species are shown at a location of I km above the shuttle as a function of

the upstream coordinate. Within the statistical scatter, there is no

apparent azifterence in the upstream decay rate for H2 0 and CO2 , but

retative to these molecules, H12 gains approximately an order of magnitude

in (ensity at an upstream distance of 2 kilometers. (At this distance it

is probably comparable to the atmospheric concentration of H2 , although no

atmospheric H2 was included in the calculation. The point that is being

made, however, is simply that light molecules are better at making it

upstream and then being blown back into the shuttle area.)

Some features of the velocity distribution function for scattered H 2

moiecules is shown in Figures 15 and 16. Figure 15 displays the mean

upward (Z) velocity component for the plane at X=O. This velocity Is in

the neighborhood of 5 km/s at a distance of 2 km above the shuttle, but.

becomes negative at the shuttle. The spread in the scattered H2 velocity

distribution is characterized by the translational temperature shown in

Figure 16. Near the shuttle the temperature is relatively iow (considering

- 71

= • m m l mj



SCATTERED H2 OENSITY AT X-0 METERS
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Figure 9. A Contour Plot of the Scattered H2 Number Density at an x
Location of 0 Meters For the 200 Kilometer Case.
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SCATTERED H2 SCATTERE-D DENSITY AT X-500 METERS
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Figure 10. A Contour Plot of the Scattered H12 Number Density at an X
Location of 500 Meters For the 200 Kilometer Case.

-73-



SCATTERED H2 DENSITY AT X-1500 METERS
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Figure 1.1. A Contour Plot of the Scattered H2 Number Density at an X
Location ot 1500 Meters For the 200 Kilometer Case.

-74-



SCATTERED H2 DENSITY AT Z=1000 METERS
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Figure 12. A Contour Plot of' the Scattered H2 Number Density at a Z

Location of 1000 Meters For the 200 Kilometer Case.
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SCATTERED CO2 DENSITY AT Z-100 METERS
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Figure 13. A Contour Plot of the Scattered CO2 Number Density at a Z
Location of 1000 Meters For the 200 Kilometer Case.
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SCATTERED H2 Z VELOCITY AT X-0 METERS
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Figure 1,. A Contour Plot of the Z Velocity Component for ,,he
Scatterea H2 at an X Location of 0 Meters For the 200
Ki Lometer Case.
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SCATTERED H2 TEMPERATURE AT X-0 METERS
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F.g;ure 16. A Contour Plot of the Transiational Temperature for the
Scattered H2 at an X Location of 0 Meters For the 200
Kiuomelrer Case.
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the 7 km/s shuttle velocity), with a minimum of approximately 2500 K,

increasing to values on the order of 6000 K about 1.5 km above the shuttle.

The failure of Figures 15 and 16 to show precise right-to-left symmetry is

Que to statistical scatter, and the degree of asymmetry gives an indication

of the error in the calculations.

Figures 17 and 18 show the same two quantities for scattered CO2 . i1

the flow were in translational equilibrium, of course, the curves would be

iaentical for scattered H 2 and scattered CO2 . It can be seen that the

curves iook very different, indicating substantial translational

nonequilibrium. The CO2 reaches a maximum Z velocity of approximately half

that of the H2 , and the maximum occurs much closer to the shuttle. The

temperature for the scattered CO2 is substantially larger than that of H2 ,

however, reaching as high as 12,000 K. It should be noted that the

translational temperature is proportional to the molecular weight times the

square of the velocity fluctuation from the mean. Hence, although the CO 2

has a higher translational temperature, it corresponds to a lower velocity

fluctuation due to the much heavier molecular weight for CO2 . The

translational temperature, rather than the velocity fluctuation, is

presented since this is the quantity that becomes identical between species

in equilibrium.

The effect of molecular weight on the scattered species properties in

the vicinity of the shuttle (at the origin) is illustrated in Figures 19 to

21. Figure 19 shows the normalized densities as a function of molecular

weight. The densities in this figure have been divided by the exhaust mole

fraction for each species, so the figure represents the tendency of the

molecules to make it back to the shuttle vicinity, irrespective of their

initial prevalence. The figure shows that the tendency to get back to the

shuttle vicinity is essentially independent of species molecular weight.

This somewhat unexpected result is apparently due to the shuttle's

location. That is, the outer reaches of the scattered cloud are relatively

highly populated in the more mobile H2 . Since conservation applies, H2 is,

therefore, relatively depleted in the core region of the plume. In between

the two extremes, there are places where molecular weight does not have :i

great effect on local density, and the shuttle appears to be at such a

place. The same result was noted in the calculations for the other

altitudes and, it' this trend holds up, it may facilitate a method of making

quick estimates of contar" ation due to atmospheric scattering. Since this

is probabjy the most difficult portion of the contamination to calculate,

it is a potentially significant result.
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SCATTERED C02 Z VELOCITY AT X-0 METERS
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Figure 17. A Contour Plot of the Z Velocity Component for the
Scattered CO2 at an X Location of 0 Meters For the 200
Kilometer Case.
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SCATTERED CO2 TEMPERATURE AT X-0 METERS
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Figure 18. A Contour Plot of the Translational Temperature for the
Scattered C02 at an X Location of 0 Meters For the 200
Kilometer Case.
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NORMALIZED SPECIES DENSITIES AT SHUTTLE
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Figure 19. The Effect ot Exhaust Species Molecular Weight on the

Normalized Scattered Species Density in the Vicinity of

The Shuttle.
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SPECIES Z VELOCITIES AT SHUTTLE

_liii I' 1111"1111111111111

x--

C9)
x/

/

/

LI) /

I

--J LI)

-4 /
I

-484

I

0 10 20 30 '40 50

SPECIES MOLECULRR WEIGHT (AMU)

Figure 20. The Effect of Exhaust Species Molecular Weight on the

Scattered Species Z Velocity Compornent in the Vicinity o1

the Shuttle.
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SPECIES TEMPERATURES AT SHUTTLE
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Figure 21. The Effect of Exhaust Species Molecular Weight on the
Scattered Species Translational Temperature in the
Vicinity of the Shuttle.
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Figure 20 shows the vertical velocity component as a function of

molecular weight at the shuttle. Note that the zero on the scale is at the

top of the curve, with increasingly negative values corresponding to

downwaro on the graph. Hence, there is a monotonic variation, with the

lighter molecules showing a much larger downward vertical velocity

component than the heavier molecules when they do make it back to the

shuttle. Finally, the translational temperature is shown in Figure 21.

Again, it should be noted that the temperature at the shuttle increases for

increasing molecular weight, but that this corresponds to a decreasing mean

velocity fluctuation.

12.3 Surface Contamination at 200 Kilometers

Useful direct surface contamination statistics were not obtained for

this run. The reason is that the altitude was high enough that the

atmospheric mean free path was greater than shuttle dimensions, ana the

solution region haa to extend to many mean free paths to describe the

contaminant cloud. The resultant large cell size meant that molecular

tnteractions with the shuttle became sufficiently improbable that none of
significance occurreo. Essentially, the problem results from the

separation of the iength scales of the atmospheric mean free path aria the

shuttle ujmenisions. The problem is even more severe, of course, at the

higher attituoes.

A modification to the code is planned whereby the present solution

will be calculateu and called the "outer" solution. This solution will

then aefine inward fluxes of all species for an "inner" solution region,

which is just the smallest set of the outer solution cells whic.h completely

contain the shuttle. With the boundary condition given by the outer

solution, the inner solution can then be run with a greatly reduced grid

spacing, and good statistics will be obtained for direct surface

contamination. The two spatial solutions can be combined to give a

resultant cloud solution as well.

For the present problem, it is possible to exploit the separation of

length scales to obtain useful contaminant flux information. For a

Maxwellian velocity distribution, the one-way flux, f+, of molecules in any

direction, i+, (that is, counting only those molecules which have a

positive velocity component in the specified direction) is given by:

f+= n/(2-va)](exp(-W 2 )]/'W + W[1 + ert(W)} , (136)
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U, = U. l (139)

In these reiations, u is the mean species flow velocity, m is its

moiecular weight, n is its number density, and T is its translational

temperature. Although the actual species velocity distributions are

cicarly non-Maxwcjlian, the representation should be quite accurate for the

present case since the first three moments of the actual distribution

function, with no assumption of equilibrium, are used to determine n, u and

The resulting fluxes ',r the three molecules are shown in Figures 22

through 24 for the Y-Z plane. For scattered H2 , the flux reaches a maximum

on the top of about 1.2x1O 1 5 molecules/cm 2/s, which, if it were to stick,

would correspond Lo approximately a monoiayer in about half a secona. Of

course, H, woulu not be expecteu to stick, but water would, ano the water

return tiux is 70% as high on the upper surface. The potential for

co'ria,:tnattoL via scattered H2 0 would seem to be substantial for this

exampie, ao CO2 may also be a problem although the maximum flux is

approximately a factor of eleven less than for the H20.

Tr'ere is a sJighc asymmetry in the flux curves, which is more apparent

for the scacterfee CO2 than the others. This asymmetry is due to the

inclusion of the calculateu Y velocity component in the flux expression.

From symmetry, it is known that there would be a zero Y velocity component

tor ail species at the origin; and any calculated value is, therefore,

inniocative of the statistical error. Although using a zero Y velocity

componeni rather than the calculated one is entirely j 3 tified on physical

terms, it is usefuJ to include the calculated one precisely because it

(,ives a ireasure of the error in the calcu!ation.
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SCRTTERED H2 FLUX ON SHUTTLE
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SCRTTERED H20 FLUX ON SHUTTLE
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F'Iure 23. The Return Flux ot Scattered H2 0 n the Y-Z Plane as a

Function of Azimuthal Angle. in the Vicinity of the

Shuttle. for the 200 Km Case.
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SCRTTERED CO2 FLUX ON SHUTTLE
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Shuttle, for the 200 Km Case.

0 90 8

ANLRMoETCL DGES

Pigure 24. The Retur Flu of Sctee OPnteYZPaea



Another feature of the flux curves which is noteworthy is that the

retative magnitudes of the maximum (upper surface) and minimum (lower

surface) fluxes varies significantly with molecular weight. The heavier

species have a flux which is more dominated by the thermal or random

component of the velocity distribution function and less so by the mean

velocity or directed component. Due to this, the contaminant flux on the

lower surface for scattered CO2 is 63% of the upper surface flux, while for

scattered 112 it is only 27% of the upper surface flux.

12.4 Results at 250 and 300 Kilometers

The flux curves for the 250 and 300 km altitudes are given in Figures

25 througn 30. The same general trends noted above are evident at the

higher altitudes as well, except that the level of the fluxes are reduced.

The most interesting result from the calculations at varying altitude is

the scaJing of the scattered fluxes. At high enough altitude, in the free

molecular flow regime, the return flux will be due to single collisions

between the exhaust species and an essentially undisturbed atmosphere. In

this flow regime, therefore, the return flux would be expected to simply be

proportional to the ambient number density. As the altitude becomes lower,

however, a portion of the flux will be due to exhaust species which have

experienced multiple collisions with atmospheric species. The return flux

in a multiple collision regime would be expected to exhibit a nonlinear

behavior and show a stronger dependence on ambient number density.

Figure 31 shows the maximum returned fluxes in the Y-Z plane as a

function of ambient number density for each of the three species. Also

shown in the figure is a dashed line showing the slope that would result

from a linear dependence of return flux on ambient number density. The

figure makes it clear that multiple collisions are quite important at 200

km (the highest ambient. number density), since the decline in the maximum

return flux is much greater than linear with ambient density when going to

250 km. The variation between 250 and 300 km is nearer the linear slope,

though still somewhat steeper, indicating that multiple collisions still

play a role at the 250 km altitude. One can speculate from the figure that

if runs had been made for higher altitudes (i.e., lower densities! that the

free molecular limit would be realized at 300 km and above, but. this cannot

be proven in the absence of such runs.
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SCATTERED H2 FLUX ON SHUTTLE
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Figure 25. The Return Flux of Scattered H2 in the Y-Z Plane as a
Function of Azimuthal Angle, in the VicinitV of the
Shuttle, for the 250 Km Case.

-92 -

* |11 |11 lii11111111Iii



SCATTERED H20 FLUX ON SHUTTLE
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Figure 26. The Return Flux of Scattered H20 in the Y-Z Plane as a

Function of Azimuthal Angle, in the Vicinity of the

Shuttie, for the 250 Km Case.
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SCRTTERED C02 FLUX ON SHUTTLE
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Figure 27. The Return Flux of Scattered CO2 in the Y-Z Plane as a

Function of Azimuthal Angle, in the Vicinity of the

Shuttle, for the 250 Km Case.
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SCATTERED H2 FLUX ON SHUTTLE
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Figure 28. The Return Flux of Scattered H2 in the Y-Z Plane as a
Function of Azimuthal Angle, in the Vicinity of the
Shuttle, for the 300 Ka Case.
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Figure 29. The Return Flux of Scattered H20 In the Y-Z Plane as a
Function of Azimuthal Angie, in the Vicintity of the
Shuttle, for the 300 Km Case.
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SCATTERED CO2 FLUX ON SHUTTLE
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Figure 30. The Return Flux of Scattered CO2 in the Y-Z Plane as a
Function of Azimuthal Angle, in the Vicinity of the
Shuttle, for the 300 Km Case.
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AMBIENT DENSITY EFFECT ON MAXIMUM FLUX
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i3. CONCLUSIONS

F:.te *).esent version of the SOCRATES coue should be regarded as the
:' scep ,n an ongOin, deveiopment project. It does not. yet have moules

!or' m1ny Ot the contaminant sources discussed in, the introduction, but it

wits iesi rPea in a moular fashion so the inclusion of such addttional

sources w: Ji be a straignt orwara task. The muuel does describe what is

prou;.:uvy int most aift'icui port!on of the contamination prouoem: tile

sc;t1 ( trirg ot stiuiL LC piume molecules via the atmosphere. it presents a

sot dl ,'tiunoit on !or the aodition of new sources to the mone! , whiichI is

S!i tiiiy urioerway.

'rne sample calcuiations presented here provide important insight into

t e r-ot ot molecuiar weigtht on the tendency of molecules to get scattered

Dac,C to the shuttle and the level of' fluxes to expect from such scattering.

it is hoPen that these calculations, and others to tollow, will allow the

developeent ot simplified approximate expressions which will facilitate the

estimation or contamination for general molecuies and altitudes. Such

estimares nave a substarntial place in initial experiment design. More

com:piete caicuL aLlons, of course, will always be aesirable for experiment

t[.ie(ti:on and aata analysis.
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APPENDIX A. cHI-SQUARE PROBABILITY DISTRIBUTION

A.1 Physical Basis

Funnamental ly, the chi-square function represents the distribution of
energy in an equilbrium classical system with V degrees of freedom. It is

a weii known classical result that each degree of freedom for a molecule in

an equiiibrium gas will have, on the average, an energy of kT/2, where k is

Boitzmann's constant and T is temperature. (For example, the translaLional

moue, with three degrees of freeciom, has an average energy of 3kT/2 per

,,oiucuie. rhe aistribution of translational energy among the various

motecuies foilows a chi-square distribution with 3 degrees of freedom.)

Ulner toles of energy (molecular rotation and vibration) have their own

cnaracterisLic number of degrees of freedom, which may or may not be fully

exciieu in the energy range or interest. If a mode is not fully exctted,

that simpiy means that it is behaving as if it hacd a non-integer number o

cegrees of freeuom within the classical approximation. The number of

u,=ernal degrees of freediom is directiy related to the heat capacity ot the

gas anu, essentialiy, v is selected to match the known heat capacity of a
given moiecuie in a given energy range. The assumption of a constant

:nuner 01 degrees ol freedom is. therefore, equivalent to the assumption of

a conscant heat capacity. A uiscussion of the implementation of such a

moae! aiLowing for a tinite rate relaxation towards equilibrium between

TrarislaLlonal andi internal moes is given in Reference A-I.

A.2 Definition and Mathematical PropertiesA
- 2

The cni-square probability density function, f(X;v), defines a

uistribution ol X in a domain of zero to infinity via

t(X;v)) X(1/2 - l)exp(_X/2) (A-1).2(V/2)r(V/2)

A- . Elgin, J. B., "(ietting the Good Bounce: Techniques for Efficient
Monte Cario Analysis ot Complex Reacting Flows," Report SS[-TR-28,
Spectral Sciences, in(.. Burlirgton, MA (1983).

A-2. Auramowitz. M. ana Stegun, I. A., Handbook of Mathematical
Funct ions, Nationat Bureau Ot Startoards, 940 (1968).
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where v is a positive parameter of the distribution referred to as the

numuer of Aegrees of freedom. The chi-square distribution results in a

mean value of X equal to j. Figure A--I is a plot of the chli-square

probability density function for v equal to 1, 2, and 3.

The chi-square distribution has a fundamental addition property such

thac if X i is selected from a chi-square distribution with v. aegrees of

tree(iom. anu X2 ts seiectu from a chi-square distribution with v2 oegrees

ort freeaoni, then their sum will be distributed according to a chi-square

aistribution with vi +u 2  degrees of freedom. This property is of

substantial theoretical ani practical importance.

[I the variable Z is aistributen according to a normai distribution

with zero mean ant unit variance, then Z2 will follow a chi-square

aistributilon with one degree of freedom. It follows from the above

aauition property that, in general, it Z I , Z2 , ... Zn are n variables

UJ

Z

rn ...... - 2.0

-..

w -.6 2, 1.0 . 5.

--
. l l
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seJecten from a such a normal distribution, and X is defined as the sum of
the squares of the Zi , then the X's that result will be distributed

accoraing to a chi-square distribution with n degrees of freedom.

Finally, if t is distributed according to a probability density

tunct.ion g(t;p,q), where

g(-,;P,q) q(A-2)

!I (pIq

1
R(p,q) tP-1 (] - t)q-llt r(P)r(q) (A-3)

P(p + q) (

0

(H is the Beta function) then t can be sampled via

Xl
X , ,(A-4)

where X, is selected from a chi-square distribution with Vl degrees of

freeuom, anu X 2 is selected from a chi-square distribution with V2 degrees

of freedom, with

V, = 2p (A-5)

ana

V2 = 2q (A-6)

The significance of Eq. (A-4) is that it reduces the sampling from a two-

parameter aistribution (Eq. (A-2)) to two samplings from a one-parameter

(uistrioution. The aistribution represented by Eq. (A-2) arises in cases

wriere a constrained amount of total energy is distributed among various

mones, ana its reJation to the chi-square distribution apparently has not

beet appreciated by developers of techniques for Monte Carlo fluid

mecrianics.
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A.3 Sampiing From a Chi-Sauare Distribution

The need tor sampling from a chi-square distribution comes tip when

sampling initiat values of internai energies, when calculating inelastic
collisions via the statistical collision modelA-3 or when caicuiating the

equlilbrium attermath ot many coillsions in a cell. Since these operations

musc be performed repeatedly in the heart of a Monte Carlo simulation, it

is important that the sampling be done efficiently anti accurately.

For clarity, the result of each sampling method discussed beiow will

oe tenot.eo by a different letter subscript to X. All sampling procedures

make use of a random number generator which returns a number, R, selected

from a probability density which is uniform on the interval between zero

and one. Each occurrence of R indicates a distinct sampling from the

random number generator.

A.3.1 Analytic Sampling for Integer v

Direct sampling of Eq. (A-I) can be performed for integer v, as shown

below.

A.3.1.1 v = o

As v (an intrinsically non-negative quantity) approaches zero, the

distribution function approaches a delta function, and a proper sampling is

achieved by simply selecting

Xa = 0 (A-7)

A.3.1.2 V =  1

For sampling with v = I (as well as for several other cases), it is

convenient to introduce the transformation Z2 = X. Z is then distributed

according to the probability density function p(Z) given by

A-3. Borgnakke, C. and Larsen, P. S., "Statistical Collision Model for
Monte Carlo Simulation of Polyatomic Gas Mixture," Journal of
Computational Physics, 18, 405 (1975).
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p{Z) = Z(U-])exP(-Z2/2) (A-8)
2(V/2 - 1)r(V/2)

For I) = 1., rhis uistribution is simply a normal distribution adjusted to

ailow for positive only argument. Sampling from this distribution is

(lescribea in Reference A-4. When the result is cast back in terms of X.

the result is

A = 2rR (A-9)

X b  -2Iog(R)sin 2 (A) (A-10)

A.3.1.3 v = 2

Wrien v = 2, the integral of Eq. (A-i) can be analytically inverted,

teauinug to the direct sampiing

X c = -21og(R) (A-I)

A.3.1.4 v Equal to an Even Integer

The extreme simplicity of the above sampling for v = 2, together with

the auditon property of the chi-square distribution, means that sampling

tor. U equal to an even integer is quite direct. Let J = v/2, then a proper

ctii-square sampling is given by

XU = -2log(R1 R2.. RJ )  (A-12)

where R1 througn Rj denote J samplings from the random number generator.

The fact that the log need only be taken once in Eq. (A-12) means that. the

evaluation of X. is quite efficient, even for moderately large v.

A-4. Bird, G. A., Molecular Gas Dynamics, Clarendon Press, Oxford

(1976).
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A. 3.1.5 V Equal to an odd integer

For v equal to an odd integer, the anditjion property of the chi-square

atstributiou allows the simple combination of the results for V equal to

one and v equal to an even integer, i.e.,

x e = X6 * Xd  (A-13)

where Xh is given in Eq. (A-1O) and Xd is given in Eq. (A-12) with J
(u-i /2.

A-3.2 Genera.iizea Acceptance-Rejection Sampling

For non-integer v, it is necessarV to use a gerferal.zea form of

accep.ance-reJection samp ling. Before the application to chi-square

sampi ing is presented, the acceptance-rejection technique artu Its

generalization will be briefly aiscussea.

A.3.2.1 Standaro Acceptance-Rejection Sampling

The usual acceptance-rejection technique for sampling from a general

cIIsLrbutioni function, p(x), proceeus as foilows:

1) Th: (omain of x is approximated, if necessary, by a finite
sub-uomain.

2) The maximum value of p(x), p , is calculated.

3) A variable is selected from the domain of x via

= Xmi n " R(xmax - xmin)

4) p(E)/p* is calculated, and another random variable, R, is
generated x is set equal to if R is less than p( )Ip*.

5) Steps 3 ana 4 are repeated until a value of x is determined.

Note that the probability of acceptance of the random variable in step 4 is

proportional to the distribution function being sampled, so the resulting x

values wiLl follow the desired distribution function.
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Although the generality of this approach makes it very powerful, it.

noes suffer from the following drawbacks:

If the distribution function differs significantly from its
maximum value within a substantial portion of the sampled domain.
then the rejection rate may be high. This obviously leads to a
slow sampling procedure.

* it the finite sub-domain is reduced to increase the acceptance

rate, then the sampiing aeviates from the true distribution
function.

0 !"i procenure is incapable ot sampling from an unbounded
aistibution function.

A.3.2.2 Generalization of the Acceptance-Rejection Technique

1"ne foilowlng procedure comprises a generalization of the acceptance-

ree t'. ion ecrinique:

1) A second distribution function, q(x), which can be sampled
anaiytically is chosen. Conuitions on q(x) will be discussed

be ow.

2) Fhe maximum value of p(x)/q(x), (p/q)*, is calculated.

3) A variable, , is sampled from q.

4) Q tp( )/q( )J/(p/q) is calculated, and another random
variabIe, R, is generated. x is set equal to g if R is less than

Q.

5) Stens 3 ana 4 are repeated until a value of x is determin-!d.

it should be noted that the probability density for a given value of x

is proportional to the product of the initial selection probability times

tne acceprance prooahbiity. Since the former probability is proportional

to q(x), ann tne tatter is proportional to p(x)/q(x), the distribution of

;.c(;epc*ua values noes inaeeu follow the distribution function p(x).

.the usual acceptance-rejection technique is simply the case where q(x)

:s consi.ant, but it is evident that this is not always the best (or even a

.)oss e oi) choice. All of the objections to the standard acceptance-

ruiection rtecnni(lue can be removea or amelioraten by a suitable choice for

q(x) In particuiar:

A-7



0 There is no neeu to approximate the domain of x with a finite

sub-domain. It is merely necessary that tht, domain for q include

the domain for p. The domain for q can be larger than that for p,
since whenever a value is selected from outside the domain for p

it will always be rejected in step 4 above.

* If q is selected to be close to p, at least in the region of

highest probability, then the acceptance rate of trial values will

be large.

* Unbounded distribution functions can be sampled if q is chosen to

have the same type of singularity as p, since the only requirement
is that the ratio (p/q) remain bounded.

For any given situation, the choice of the function q is a bit of an

art, guided by the concerns highlighted above: q must have a domain which

includes the domain of p; p/q must remain bounded; and (p/q) should achieve

its maximum in the vicinity of the maximum of p.

A.3.3 Exact Acceptance-Rejection Sampling for a
Chi-Square Distribution with Large v

The acceptance-rejection technique described above can be used to

achieve an exact sampling from a chi-square distribution for large v.

(Actually, the approach is perfectly valid for all v > 1, but the method to

be ucscribed in Subsection A.3.5 is to be preferred for V < 45, or so.)

The procedure utilizes the transformed chi-square distribution, p(Z), given

by Eq. (A-8) as the distribution to be sampled. A normal distribution is

used as the initial distribution which can be sampled analytically. The

normai distribution is chosen to have a unit variance and a mean which

corresponds to the location of the maximum of p(Z). This maximum occurs at

Z given by

Z * = - i (A-14)

The functional form of the normal distribution, (q(Z), is

q(Z) = exp[-!-(Z - Z*) 2]/4-2r , (A-15)

A-8



wnicn not only has a maximum at the same location as Eq. (A-8), but has the
same exponent-ai factor- as Z approaches infinity and a domain which
ncit'aes tnat of Eq. (A-B). The sampiing of a chi-square value proceeds as

- to [ttows :

) Z* =-Vv - I is calculated.

2) A sampie from the aistribution given by Eq. (A-15) is taken via:

a) A = 2wR (A--16)

b) B = -Jog(R) (A-17)

c) Z = Z* + -v2Bsin(A) (A-18)

3) The acceptance probability, Q, is computed as

Q = (Z/Z*)(V - l)exp[-Z* (Z - Z *) (A-19)

(Q is taken to be zero for negative Z.)

4) Another random variable is generated, and Z is kept if Q > R. It' Z
is rejected, then steps 2 - 4 are repeated until a Z value is

accepteu.

5) When a Z vaiue is accepted, then the corresponding chi-square

value is given by

Xe  = Z2 (A-20)

This procedure is illustrated in Figure A-2 which shows p(Z), q(Z) and Q(Z)
for i = 50. Note that the acceptance probability is near unity in the
v!cinity of the maxima of the two distribution functions, so a large
traction of the selected samples of q(Z) will be accepted as samples of

ptZ) .

A.3.4 Exact Acceptance-Rejection Sampling for a Chi-Square
Distribution with (0 < v < 2).

For this domain of V it is convenient to introduce another

transtormation to Eq. (A-i). If W is defined by
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I i I I I I II

p(Z) FOR V 50 (Eq. -1)

Li I SHIFTED NORMAL (Fq. A-5)
. .ACCEPTRNCE PROB. (Eq. A-I9)

ci--. . ._J/

ci -

CD

3.0 5.0 7.0 9.0 11.0

SAMPLED VARIABLE. Z .

Figure A-2. A Representation of the Transformed Chi-Square
Distribution, p(Z), for v = 50 (solid line). p(Z) is
sampled by first selecting a variable from the shifted
nor-mat distribution (dashed line) and keeping it with a
probability given by Q(Z) (dotted line).
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w = exp(-X/2) , (A-21)

then the probability aensity function for W is given by h(W), where

n(W; ,-iog(W)j(v/2 - 1) (-2
1101 = . ... P(v/2) (A-22)

The aomain for W is finite (between 0 and 1), but h(W) becomes infinite as

W approacnes unity. rie generalizen acceptance-rejection technique (an

stli, be usea, however, since the function q(W) given by

q(W) = (v/2)(l - W) (V/ 2  - 1) (A-23)

nas Ihe same type of singularity ana can be analytically sampied. The

cni;-square sampling for (0 < v < 2) proceeas as follows:

fl A sample from q(W) is generatet via

W = I - R(2/v) (A-24)

2; The acceptance pronability, Q, is computeu from

Q = (W - 1J/!og(W)! (t  - v/2) (A-25)

3) Another ranoom variable, R, is generated, and W is kept if Q > R:

otherwise steps 2 and 3 are repeated until a value for W is

accepte.

4) When a vatue for W is accepted, the corresponding chi-square value

ts given by

Xf = -2iog(w) (A-26)

This procedure is illustrated in Figure A-3, which shows the two

aistribution functions, h(W) and q(W), and the acceptance probability,

O(W). tor o = 1. It can be seen that q(W) provides an excellent choice for

the initial selection of W, since the acceptance probability remains high

throtuigout tne important domain of W. This point will be discussea in more

detail in Sec. A.3.6.
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* i I I ii i ii _

h(W) FOR v--I.0 (Eq. n-22)

LwL - q (W) (Eq. A-23)
...D ACCEPTANCE PROB. (F9 . R-25)

rT ...-. .. ........
Ci

-J-

I I 
D

0.0 0.2 0.q 0.6 0.8 1.0

SFMPLED VARIABLE, W=EXP(-X/2)

5igure A-3. A RepresentaLio, of the Transtormed Chi-Square

Distribution, h(W), for v = 1 (solid line). h(W) is
sampled by analyticaly selecting a variable from q(W)

(Washea line) and keeping it with a probability given
by Q(W) (dotted line).
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A.3.5 Exact Chi-Square Sampling for General V

Usirng the tunuamentai audition property of chi-square distributions,

it is possible to combine the procedure described in Subsection A.3.1.4 for

j equat to an even intege!r with the procedure describea in Subsection A.3.4

,or (0 < ' < 2) to achieve a exact general sampling technique for arbitrary

V. In,2s is given simpiy by

X 2 + Xf (A-27)

wnert XU is caicuiatea from Eq. (A--12) with J equal to the integler portion

o1 '.02, ana X i is calculatea as in the preceding section with v being

repl aced Dy V-2J.

It i.s to be noted that both the approach given in this subsection

(FEq. (27)) and that given in Subsection A.3.3 (Eq. (A-20)) are exact and

appicable tor v > i. In general, the approach of this subsection is

constnerably raster, although as v gets large the approach of Subsection

A.3.3 becomes more attractive. There are two potential difficulties with

Eq. (A--27) as v becomes very large. Firstly, the product required in

Eq. (A-12) Cers more ana more cumbersome to compute as v increases and,

seconnly, the larger The number of factors in This product the greater is

tue chance that it will yield a number so small as to proauce a floating

ponr1L unoerftow on a cli,'puter. (Since Monte Carlo codes must be highly

re abie, any such problem should be made essentially impossible.) It

turns out. that. the second problem is more restrictive (at least for 32-bit

compuCers), dictating that the Eq. (20) should be used for v greater tniui

45 or so. This Keeps the probability of an uncerflow below 10- 10 on any

fwiven sampling.

A. 3.6 Approximate Chi-Square Sampling for (0 < v < 2)

Trite procedure described in the preceding section is quite efficient,

r)ui. "i ,s nonetheless useful to consider approximate methods for sampling

!rom cni-square nistributions. While it would be scarcely possible to

rmpr'ove on sampling for- even integer t discussed in Subsection A.3.1.4, it

:- ..,:sonaule to investigate approximations tor the (0 < v < 2) portion

(I: iUsseW1 in Subsection A.3.4. A likeiy piace to look for useful

aiptoxmations in this procedure is in the calculation ot Q (Eq. (A-25)),
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wnjcn must be pertormeo for every W seiecteu in Eq. (A-24). (Noie that the

i.w.;jCIJaLIoIl o0 Q invojves more computational effort than the ealcuiation of1

W.)

Thu overal i probabi lity that the value chosen in Eq. (A-2,t) wi be

xept as a sample ol Eq. (A-22) is given by P, where

C

P I((W)Q(W)UW = P(l + V/2) (A-28)S
0

Hence, as V approaches 0 or 2, all initially selected vaJues of W are kept

as valia samples of Eq. (A-22), and the computation of Q serves nu useful

purpose. In the worst case (v = 0.92) the overall acceptance probability

is 89%, an only 11% of the initially selected variables are rejected. The

approximate chi-square sampling involves approximating Q(W) by an easily

caiculabte function which differs Littie from Eq. (A-25). The current

approximation is Qa(W), given by

Qa(W) I - ( v - /2)(1. - W)J . + a(v)(1 - W)2 1 , (A-291

where

a(v) .2511v + .2073 (A-30)

Qa was seiected to match the value an slope of Q at W 1, which is the

reglort ot nighest probability density. The coeffi!cient a(u) is a linear

!it to vatues cnosen to be optimal in the least squares sense. A

comparison of Q and Qa for v = 1.0 is shown in Figure A-4, which

,iimons rates the suostantiaJ accuracy ot the approximation.

it is fuiulmentally more important, of course, to compare the correct

cni-square distribution with the distribution which is effectively being

sampieu in the approximate Technique. If ha(W) is the approximation analog

ot h(W), then ha(W) is proportional to the product q(W)Q(W), i.e.,

ha(W) = A(1-W)(v/ 2 - ')Qa(W) , (A-31)

where the normalization factor, A, is determined by requiring that. ha(W)

give unity when integrated between zero and one. This results in
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U2 ' 2V + 8 2a( )
+ v -t6(A-32)

A 2V2 + 4i

O-nce ha(W) is de"inea, the corresponding distribution function for X,

ta(X;v) is obtained by multiplying ha(W) by the magnituac of dW/dX (= W/2),

ana substituting W = exp(-X/2). The comparison between f(X;l.0) and

* fa(X:1.0) is given in Figure A-S, ann the agreement is excellent. The use

ot the approximate technique is approximately 40% faster than the exact

acceptance-rejection technique, and the difference in the distributions

neirn sampied wilt probably always be negligible. Although the ability to

sample from an exact chi-square aistribution will be kept as an option, it

is relt. that the approximate technique otters a substantial time savings

!or an inconsequential loss of accuracy.
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Z EXACT. 0(W) (E-q. A-25)
C][..... APPROXIMATE. Q(W) (Eq. A-29)-l--

0.0 0.2 0Aq 0.6 0.8 ] .0

mI

SAMPLED VARIAlBLE, W=EXP (-X/2)

Figtre. A-4. A Comparison of" the Exact. and Approximate Acceptur, ce
Probabilities f'or v-1.
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EXACT, F(X: v)
W.APPROXIMATE, Fo(X V)

(V = 1. 0)

HT-

0.0 2.0 4.0 6.0 8.0 10.0

SAMPLED VARIABLE, X

Figure A--5. A Comparison of' the Exact Chi-Square Distribution,
, (X;v) with the Approximate Distribution. fa(X;V) which

_is Effectively Being Sampled by the Approximate
Technique Presenteo in Sutbsection A.3.6. v was taken

. to be Unity for the comparison.
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